[1]Gurappa I. Protection of titanium alloy components against high temperature corrosion[J]. Materials Science and Engineering A, 2003, 356(1): 372-380. [2]陶春虎, 刘庆瑔, 曹春晓, 等. 航空用钛合金的失效及预防[M]. 北京: 国防工业出版社, 2002. [3]Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996, 213(1/2): 103-114. [4]曹春晓. 选材判据的变化与损伤容限钛合金的发展[J]. 金属学报, 2002, 38(S1): 4-11. Cao Chunxiao. Change of material selection criterion and development of high damage-tolerant titanium alloy[J]. Acta Metallurgica Sinica, 2002, 38(S1): 4-11. [5]杨冬雨, 付艳艳, 惠松骁, 等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011, 35(4): 575-580. Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580. [6]张喜燕, 赵用庆, 白晨光. 钛合金及其应用[M]. 北京: 化学工业出版社, 2005: 90. [7]朱增辉, 胡生双, 杨 平, 等. 冷热循环处理对TC18钛合金力学性能和尺寸稳定性的影响[J]. 钛工业进展, 2018, 35(4): 17-21. Zhu Zenghui, Hu Shengshuang, Yang Ping, et al. Effects of thermal-cold cycling treatment on mechanical properties and dimensional stability of TC18 titanium alloy[J]. Titanium Industry Progress, 2018, 35(4): 17-21. [8]胡生双, 孟晓川, 王 清, 等. 不同双重退火工艺对TC21钛合金力学性能和断口形貌的影响[J]. 金属热处理, 2020, 45(5): 110-114. Hu Shengshuang, Meng Xiaochuan, Wang Qing, et al. Effect of double annealing process on mechanical properties and fracture morphology of TC21 titanium alloy[J]. Heat Treatment of Metals, 2020, 45(5): 110-114. [9]党 薇, 薛祥义, 李金山, 等. TC21合金片层组织特征对其断裂韧性的影响[J]. 中国有色金属学报, 2010, 20(S1): 16-20. Dang Wei, Xue Xiangyi, Li Jinshan, et al. Influence of lamellar microstructure feature on fracture toughness of TC21 alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 16-20. [10]Yang Y L, Wang W Q, Li F L, et al. The effect of aluminum equivalent and molybdenum equivalent on the mechanical properties of high strength and high toughness titanium alloys[J]. Materials Science Forum, 2009, 618-619: 169-172. [11]李峰丽, 王韦琪, 羊玉兰, 等. Ø250 mm BTi6554钛合金棒材组织与性能研究[J]. 金属加工(热加工), 2015(9): 85-86. [12]李成林, 于 洋, 惠松骁, 等. Ti-6554钛合金的TTT曲线测定[J]. 中国有色金属学报, 2010, 20(1): 560-564. Li Chenglin, Yu Yang, Hui Songxiao, et al. Determination of TTT curve of Ti-6554 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 560-564. [13]于 洋, 李成林, 惠松骁, 等. Ti-6554钛合金的晶粒长大动力学[J]. 中国有色金属学报, 2010, 20(1): 161-166. Yu Yang, Li Chenglin, Hui Songxiao, et al. Grain growth dynamics of Ti-6554 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 161-166. [14]周 伟, 葛 鹏, 赵永庆, 等. 一种新型β钛合金不同固溶冷却条件下初生α相演变行为研究[J]. 钛工业进展, 2016, 33(4): 22-25. Zhou Wei, Ge Peng, Zhao Yongqing, et al. Study of primary α phase transformation in a new beta titanium alloy with different cooling conditions[J]. Titanium Industry Progress, 2016, 33(4): 22-25. [15]覃佳栋, 屠孝斌, 刘继雄, 等. 固溶冷却方式对Ti60钛合金大规格棒材组织和力学性能的影响[J]. 科技创新与应用, 2020(6): 120-122. |