[1]黄 旭, 李臻熙, 黄 浩. 高推重比航空发动机用新型高温钛合金研究进展[J]. 中国材料进展, 2011, 30(6): 21-27. Huang Xu, Li Zhenxi, Huang Hao. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engings[J]. Materials China, 2011, 30(6): 21-27. [2]蔡建明, 李臻熙, 黄 旭, 等. 提高600 ℃高温钛合金热强性能的β稳定化元素选择和成分优化[J]. 稀有金属材料与工程, 2008, 37: 934-939. Cai Jianming, Li Zhenxi, Huang Xu, et al. Selection and optimization of β stabilizing element to improve the heat resistance of 600 ℃ high temperature titanium alloy[J]. Rare Metal Materials and Engineering, 2008, 37: 934-939. [3]王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1-26. Wang Qingjiang, Liu Jianrong, Yang Rui. High temperature titanium alloys: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26. [4]张 灿, 王轶鹏, 叶 蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术, 2020(6): 81-86. Zhang Can, Wang Yipeng, Ye Lei. Summary of the technology development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology, 2020(6): 81-86. [5]黄志澄. 高超声速武器及其对未来战争的影响[J]. 战术导弹技术, 2018(3): 1-7. Huang Zhicheng. Hypersonic weapons and its influence on future war[J]. Tactical Missile Technology, 2018(3): 1-7. [6]张伟堂. 临近空间超声速飞行器短时热强钛合金应用分析[J]. 航空制造技术, 2018(1): 76-87. Zhang Weitang. Analysis on application of short-time and heat-resistant titanium alloys on near-space supersonic aerocraft[J]. Aeronautical Maufaturing Technology, 2018(1): 76-87. [7]张伟堂. 钛合金短时高温蠕变与持久行为初步研究[J]. 航空制造技术, 2013(16): 119-125. Zhang Weitang. Preliminary research on short-time and high temperature creep and endurance behavior of titanium alloy[J]. Aeronautical Maufaturing Technology, 2013(16): 119-125. [8]王小翔, 王韦琪, 马鸿海. 700 ℃高温高强BTi-6431S合金的组织与力学性能[J]. 中国有色金属学报, 2010, 20(S1): 792-795. Wang Xiaoxiang, Wang Weiqi, Ma Honghai. Microstructure and mechanical properties of high temperature and high strength BTi-6431S alloy at 700 ℃[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(S1): 792-795. [9]周 伟, 辛社伟, 洪 权, 等. 固溶冷却速度对短时高温钛合金显微组织和力学性能的影响[J]. 稀有金属与硬质合金, 2020, 48(4): 49-52. Zhou Wei, Xin Shewei, Hong Quan, et al. Effect of solution cooling rate on microstructure and mechanical properties of short-time high-temperature titanium alloy[J]. Rare Metals and Cemented Carbides, 2020, 48(4): 49-52. [10]魏寿庸, 何 瑜, 祝 瀑. 世界各国工业钛合金的成分, 相组成与性能特征[C]//中国有色金属学会第十四届材料科学与合金加工学术年会论文集. 2011: 367-374. [11]朱知寿, 王新南, 商国强, 等. 新型高性能钛合金研究与应用[J]. 航空材料学报, 2016, 36(3): 7-12. Zhu Zhishou, Wang Xinnan, Shang Guoqiang, et al. Research and application of new type of high performance titanium alloy[J]. Journal of Aeronautical Materials, 2016, 36(3): 7-12. [12]王新南, 朱知寿, 童 路, 等. 锻造工艺对TC4-DT和TC21损伤容限型钛合金疲劳裂纹扩展速率的影响[J]. 中国材料进展, 2008, 27(7): 12-16. Wang Xinnan, Zhu Zhishou, Tong Lu, et al. The influence of forging processing on fatigue crack propagation rate of damage-tolerant titanium alloy[J]. Materials China, 2008, 27(7): 12-16. [13]王富强, 杨立新, 王德勇, 等. TA15钛合金大型锻坯工艺及组织与性能研究[J]. 热加工工艺, 2020, 49(13): 19-23. Wang Fuqiang, Yang Lixin, Wang Deyong, et al. Research on technology and microstructure and properties of TA15 titanium ally large-size foging billet[J]. Hot Working Technology, 2020, 49(13): 19-23. [14]Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metallurgical and Materials Transactions A, 2002, 33: 837-850. [15]Churchman A T. The slip modes of titanium and the effect of purity on their occurrence during tensile-deformation of single crystals[J]. Proceedings of the Royal Society of London Series A, 1954, 226: 216-226. [16]Farenc S, Caillard D, Couret A. An in-situ study of prismatic glide in alpha-titanium at low-temperatures[J]. Acta Metallurgica et Materialia, 1993, 41: 2701-2709.[17]Madsen A, Ghonem H. Effects of aging on the tensile and fatigue behavior of the near-α Ti-1100 at room temperature and 593 ℃[J]. Materials Science and Engineering A, 1994, 177(1/2): 63-73. [18]信云鹏, 朱知寿, 王新南, 等. TB17钛合金两相区等温时效析出行为研究[J]. 钛工业进展, 2020, 37(3): 10-14. Xin Yunpeng, Zhu Zhishou, Wang Xinnan, et al. Study on isothermal aging precipitation behavior of TB17 titanium alloy in α+β region[J]. Titanium Industry Progress, 2020, 37(3): 10-14. [19]朱知寿, 王新南, 童 路, 等. 新型TC21钛合金相变行为和相组成研究[J]. 稀有金属快报, 2006, 25(12): 23-27. Zhu Zhishou, Wang Xinnan, Tong Lu, et al. Phase transformation and composition for novel TC21[J]. Rare Metals Letters, 2006, 25(12): 23-27. [20]李 娟, 蔡建明, 黄 旭, 等. TG6高温钛合金中α2相的沉淀析出行为及其对塑性的影响[J]. 航空材料学报, 2011, 31(S1): 80-84. Li Juan, Cai Jianming, Huang Xu, et al. Precipitation behavior of α2 phase in high temperature titanium alloy and effect on the tensile plasticity[J]. Journal of Aeronautical Materials, 2011, 31(S1): 80-84. |