[1]Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Materialia, 2003, 51(9): 2611-2622. [2]Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment [J]. Materials Science and Engineering A, 2006, 438(40): 25-34. [3]Miyamoto G, Oh J, Hono K, et al. Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe-0.6mass%C martensite [J]. Acta Materialia, 2007, 55(15): 5027-5038. [4]Leslie W C, Rauch G C. Precipitation of carbides in low-carbon Fe-Al-C alloys [J]. Metallurgical Transactions A, 1978, 9(3): 343-349. [5]Michal G M, Slane J A. The kinetics of carbide precipitation in silicon-aluminum steels [J]. Metallurgical and Materials Transactions A, 1986, 17(8): 1287-1294. [6]Keh A S, Leslie W C. Recent Observations on Quench-Aging and Strain-Aging of Iron and Steel [M]. Boston: Materials Science Research, Springer, 1963: 208-250. [7]Huang X F, Liu W, Huang Y, et al. Effect of a quenching-long partitioning treatment on the microstructure and mechanical properties of a 0.2C% bainitic steel[J]. Journal of Materials Processing Technology, 2015, 222(3): 181-187. [8]康煜平. 金属固态相变及应用 [M]. 北京: 化学工业出版社, 2007: 187-210. Kang Yuping. Metal Solid Transformation and Application [M]. Beijing: Chemical Industry Press, 2007: 187-210. [9]Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels [J]. Acta Metallurgica, 1959, 7(1): 59-60. [10]Bagmutov V, Dudkina N G, Zakharov I N. Formation of surface layer structure produced by electromechanical strengthening of carbon steels [J]. Mechanika, 2015, 2003(2): 55-59. [11]Li H Y, Lu X W, Wu X C, et al. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon [J]. Materials Science and Engineering A, 2010, 527(23): 6255-6259. [12]Hajy A F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel [J]. Acta Materialia, 2016, 104(1): 72-83. [13]高古辉, 桂晓露, 谭谆礼. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展 [J]. 材料导报, 2017, 31(21): 74-81. Gao Guhui, Gui Xiaolu, Tan Zhunli. Carbide-free bainite/martensite multiphase high strength steels: A review [J]. Materials Review, 2017, 31(21): 74-81. [14]谭小东, 许云波, 杨小龙. 一步淬火分配钢的工艺设计与微观组织演变 [J]. 东北大学学报(自然科学版), 2014, 35(5): 681-685. Tan Xiaodong, Xu Yunbo, Yang Xiaolong. Process design and microstructure evolution of one-step quenched and partitioned steel [J]. Journal of Northeastern University (Natural Science), 2014, 35(5): 681-685. [15]江海涛, 唐 荻, 米振莉. 配分工艺对低碳Q&P钢中残余奥氏体的影响 [J]. 材料科学与工艺, 2011, 19(1): 99-103. Jiang Haitao, Tang Di, Mi Zhenli. Effect of partitioning parameters on the retained austenite in low-carbon Q&P steel [J]. Materials Science and Technology, 2011, 19(1): 99-103. [16]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 167-225. Hu Gengxiang, Cai Xun, Rong Yonghua. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 167-225. |