[1]Cantor B, Chang I T H, Knight P, et al. Microstructural development inequiatomic multicomponent alloys [J]. Materials Science and Engineering A, 2004, 375-377: 213-218. [2]叶均蔚, 陈凯瑞. 高熵合金[J]. 科学发展, 2004, 377(5): 16-21. Ye Junwei, Chen Kairu. High entropy alloy [J]. Scientific Development, 2004, 377(5): 16-21. [3]吴 颖, 曾 强, 肖辉进, 等. 退火处理对3D打印CoCrFeMnNi高熵合金组织和性能的影响[J]. 金属热处理, 2021, 46(8): 192-196. Wu Yin, Zeng Qiang, Xiao Huijin, et al. Effect of annealing treatment on microstructure and properties of 3D printed CoCrFeMnNi high-entropy alloy [J]. Heat Treatment of Metals, 2021, 46(8): 192-196. [4]Hu M C, Qing P, Wang X D, et al. Tuning nanostructure and mechanical property of Fe-Co-Ni-Cr-Mn high entropy alloy thin films by substrate temperature [J]. Materials Today Nano, 2021, 15: 100130. [5]Stepanov N D, Shaysultanov D G, Tikhonovsky M A, et al. Tensile properties of the Cr-Fe-Ni-Mn non-equiatomic multicomponent alloys with different Cr contents [J]. Materials & Design, 2015, 87(15): 60-65. [6]Zhang L J, Guo K, Tang H, et al. The microstructure and mechanical properties of novel Al-Cr-Fe-Mn-Ni high-entropy alloys with trimodal distributions of coherent B2 precipitates [J]. Materials Science & Engineering A, 2019, 757: 160-171. [7]Zhao Y L, Yang T, Zhu J H, et al. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates [J]. Scripta Materialia, 2017, 148: 51-55. [8]谭雅琴, 王晓明, 朱 胜, 等. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126. Tan Yaqin, Wang Xiaoming, Zhu Sheng, et al. Research progress on strengthening and ductilizing high-entropy alloys [J]. Materials Reports, 2020, 34(5): 5120-5126. [9]Zhang L J, Jiang Z K, Zhang M D, et al. Effect of solid carburization on the surface microstructure and mechanical properties of the equiatomic CoCrFeNi high-entropy alloy [J]. Journal of Alloys and Compounds, 2018, 769: 27-36. [10]李 哲, 张伟强, 孙日伟, 等. 固体渗碳对CuCoCrNiFe高熵合金组织和硬度的影响[J]. 功能材料, 2016, 47(6): 6190-6193. Li Zhe, Zhang Weiqiang, Sun Riwei, et al. The effect of solid carburization on microstructure and hardness of CuCoCrNiFe high entropy alloy [J]. Journal of Functional Materials, 2016, 47(6): 6190-6193. [11]Nishimoto A, Fukube T, Maruyama T, et al. Microstructural, mechanical, and corrosion properties of plasma-nitrided CoCrFeMnNi high-entropy alloys [J]. Surface & Coatings Technology, 2019, 376: 52-58. [12]Wang Y X, Yang Y J, Yang H J, et al. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy [J]. Materials Chemistry and Physics, 2018, 210: 233-239. [13]Hou J X, Song W W, Lan L W, et al. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys [J]. Journal of Materials Science & Technology, 2020, 48: 140-145. [14]吴 勉, 张良界, 潘 邻, 等. QPQ技术的现状和发展趋势[C]//第十届全国表面工程大会暨第六届全国青年表面工程论坛论文集. 2014: 41-45. [15]张伟林, 赵靖宇, 王光辉, 等. 盐浴氮碳共渗对65Mn弹簧钢耐磨性的影响[J]. 表面技术, 2017, 46(2): 127-132. Zhang Weilin, Zhao Jingyu, Wang Guanghui, et al. Effects of salt bath nitrocarburizing on wear resistance of 65Mn spring steel [J]. Surface Technology, 2017, 46(2): 127-132. [16]马中正. 42CrMo活塞杆的QPQ氮化工艺参数研究[D]. 鞍山: 辽宁科技大学, 2020. Ma Zhongzheng. QPQ nitriding process parameters of 42CrMo piston rod [D]. Anshan: University of Science and Technology Liaoning, 2020. [17]唐 彩, 陈 波. 渗氮温度对40Cr钢QPQ组织与性能的影响[J]. 金属热处理, 2020, 45(3): 174-177. Tang Cai, Chen Bo. Effect of nitriding temperature on microstructure and properties of QPQ treated 40Cr alloy steel [J]. Heat Treatment of Metals, 2020, 45(3): 174-177. [18]Tang W Y, Yeh J W. Effect of aluminum content on plasma-nitrided AlxCoCrCuFeNi high-entropy alloys [J]. Metallurgical and Materials Transactions A, 2009, 40: 1479-1487. [19]Lan L W, Yang H J, Guo R P, et al. High-temperature sliding wear behavior of nitrided Ni45(CoCrFe)40(AlTi)15 high-entropy alloys [J]. Materials Chemistry and Physics, 2021, 270: 124800. [20]何玉龙, 赵毅红, 沈国华, 等. 渗氮处理对SLD钢表面CrTiAlN涂层组织与性能的影响[J]. 材料热处理学报, 2021, 42(7): 106-112. He Yulong, Zhao Yihong, Shen Guohua, et al. Effect of nitriding treatment on microstructure and properties of CrTiAlN coating on SLD steel surface [J]. Transactions of Materials and Heat Treatment, 2021, 42(7): 106-112. [21]郇庆婷, 杜三明, 王梦丹, 等. 不同化学热处理对GCr15钢力学性能及摩擦行为的影响[J]. 材料热处理学报, 2021, 42(5): 117-123. Huan Qingting, Du Sanming, Wang Mengdan, et al. Effects of different chemical heat treatment on mechanical properties and tribological behavior of GCr15 steel [J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 117-123. [22]杜黎明. Al0.25CoCrFeNi高熵合金渗氮层的高温摩擦磨损性能研究[D]. 太原: 太原理工大学, 2019. Du Liming. The high-temperature friction and wear properties of the nitrided layer on Al0.25CoCrFeNi high-entropy alloy [D]. Taiyuan: Taiyuan University of Technology, 2019. [23]Tang W Y, Chuang M H, Chen H Y, et al. Microstructure and mechanical performance of new Al0.5CrFe1.5MnNi0.5 high-entropy alloys improved by plasma nitriding [J]. Surface and Coatings Technology, 2010, 204(20): 3118-3124. [24]王钦娟, 林少阳, 陈忠士, 等. QPQ技术中渗氮时间对合金铸铁组织及摩擦性能的影响 [J]. 金属热处理, 2021, 46(10): 226-231. Wang Qinjuan, Lin Shaoyang, Chen Zhongshi, et al. Influence of nitriding time in QPQ technology on microstructure and friction properties of alloy cast iron [J]. Heat Treatment of Metals, 2021, 46(10): 226-231. |