[1]Wang Yanlin, Fu Lihua, Zhou Meng, et al. Thermodynamics analysis of multiple microelements' coupling behavior in high fatigue resistance 50CrVA spring steel with nanoparticles [J]. Materials, 2019, 12: 2952. [2]惠卫军, 董 瀚, 翁宇庆. 汽车螺旋悬挂弹簧用钢的发展动向[J]. 钢铁研究学报, 2001, 13(2): 67-72. Hui Weijun, Dong Han, Weng Yuqing. Development trend of high strength steels used for automotive suspension coil spring [J]. Journal of Iron and Steel Research, 2001, 13(2): 67-72. [3]罗迪强, 谢飞鸣, 汪志刚, 等. 高品质弹簧钢51CrV4的高温塑性研究[J]. 材料导报, 2016, 30(6): 90-94. Luo Diqiang, Xie Feiming, Wang Zhigang, et al. Hot ductility behavior of high-quality 51CrV4 spring steels [J]. Materials Reports, 2016, 30(6): 90-94. [4]安会芬. 金属材料与热处理[M]. 北京: 机械工业出版社, 2014. [5]徐德祥, 尹钟大. 高强度弹簧钢的发展现状和趋势[J]. 钢铁, 2004, 39(1): 67-71. Xu Dexiang, Yin Zhongda. The tendency to high strength of spring steels and the effect of alloying elements [J]. Iron and Steel, 2004, 39(1): 67-71. [6]戴良刚, 沈兆侠, 张显亮, 等. 60Si2CrVA圆柱弹簧断裂失效的原因分析[J]. 扬州大学学报(自然科学版), 2010, 13(1): 38-41. Dai Lianggang, Shen Zhaoxia, Zhang Xianliang, et al. Cause analysis on the fracture failure of the cylindrical spring made of 60Si2CrVA [J]. Journal of Yangzhou University (Natural Science Edition), 2010, 13(1): 38-41. [7]满廷慧, 江 畅, 刘 坤, 等. 大截面高强度中锰锻钢淬透性研究[J]. 钢铁研究学报, 2022, 34(8): 834-839. Man Tinghui, Jiang Chang, Liu Kun, et al. Study on hardenability of large cross-sectional high strength medium-Mn forged steels [J]. Journal of Iron and Steel Research, 2022, 34(8): 834-839. [8]彭红兵, 陈伟庆, 陈 列, 等. 硼对含锡20CrMnTi钢连续冷却转变及淬透性的影响[J]. 金属热处理, 2015, 40(9): 98-101. Peng Hongbing, Chen Weiqing, Chen Lie, et al. Effects of boron on continuous cooling transformation and hardenability of 20CrMnTi steel containing tin[J]. Heat Treatment of Metals, 2015, 40(9): 98-101. [9]陈继林, 郭明仪, 刘振民, 等. 氮含量对含硼钢淬透性的影响[J]. 轧钢, 2015, 32(4): 94-96. Cheng Jilin, Guo Mingyi, Liu Zhenmin, et al. Effect of nitrogen content on the hardenability of boron steel [J]. Steel Rolling, 2015, 32(4): 94-96. [10]王陆军, 查建军, 朱建新, 等. 淬透性在热处理实践中的应用[J]. 热处理技术与装备, 2022, 43(2): 54-59. Wang Lujun, Zha Jianjun, Zhu Jianxin, et al. Application of hardenability in heat treatment practice [J]. Heat Treatment Technology and Equipment, 2022, 43(2): 54-59. [11]陈 金, 吴 润, 徐 凯, 等. 锰在高硼钢凝固中的合金化作用[J]. 热加工工艺, 2020, 49(8): 26-29. Chen Jin, Wu Run, Xu Kai, et al. Alloying effect of manganese in solidification of high boron steel [J]. Hot Working Technology, 2020, 49(8): 26-29. [12]李 颖, 杜忠泽, 符寒光, 等. Fe-Cr-B合金的组织性能研究与应用发展前景[J]. 热加工工艺, 2012, 41(22): 76-79. Li Ying, Du Zhongze, Fu Hanguang, et al. Research and application prospect on microstructure and properties of Fe-Cr-B alloy [J]. Hot Working Technology, 2012, 41(22): 76-79. [13]黄 瑞, 赵四新, 黄宗泽. 硼对铬锰钼系含硼调质钢淬透性的影响[J]. 钢铁研究学报, 2021, 33(5): 437-442. Huang Rui, Zhao Sixin, Huang Zongze. Effects of boron on hardenability for Cr-Mn-Mo quenched-tempered steel containing boron[J]. Journal of Iron and Steel Research, 2021, 33(5): 437-442. [14]Ruan Shipeng, Zhao Aimin, Wang Lijun. Effect of boron on microstructure and properties of ultra-low carbon steel [J]. IOP Conference Series: Materials Science and Engineering, 2020, 774: 012023. [15]张 涛, 侯华兴, 衣海龙, 等. 硼含量及热处理对低碳贝氏体钢组织性能的影响[J]. 金属热处理, 2011, 36(11): 76-80. Zhang Tao, Hou Huaxing, Yi Hailong et al. Effect of boron content and heat treatment process on microstructure and mechanical properties of low bainitic steel plates[J]. Heat Treatment of Metals, 2011, 36(11): 76-80. [16]Jun H J, Kang J S, Seo D H, et al. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels [J]. Materials Science and Engineering A, 2006, 422(1/2): 157-162. [17]Lopez Chipres E, Mejia I, Maldonado C, et al. Hot ductility behavior of boron micro alloyed steels [J]. Materials Science and Engineering A, 2007, 460-461: 464-470. [18]童志博, 彭其春, 沈冬冬, 等. 硼在钢中的作用及应用[J]. 中国冶金, 2013, 23(5): 12-16. Tong Zhibo, Peng Qichun, Sheng Dongdong, et al. Function and application of boron in steel [J]. China Metallurgy, 2013, 23(5): 12-16. |