[1]张 健, 王 莉, 王 栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094. Zhang Jian, Wang Li, Wang Dong, et al. Recent progress in research and development of nickel-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9); 1077-1094. [2]金 涛, 周亦胄, 王新广, 等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162. Jin Tao, Zhou Yizhou, Wang Xinguang, et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metallurgica Sinica, 2015, 51(10): 1153-1162. [3]宁礼奎, 郑 志, 金 涛, 等. 热处理对一种新型镍基单晶高温合金组织与性能的影响[J]. 金属学报, 2014, 50(8): 1011-1018. Ning Likui, Zheng Zhi, Jin Tao, et al. Effect of heat treatments on the microstructure and property of a new nickel base single crystal superalloy[J]. Acta Metallurgica Sinica, 2014, 50(9): 1011-1018. [4]Wright I G, Gibbons T B. Recent developments in gas turbine materials and technology and their implications for syngas firing[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3610-3621. [5]Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Materials Science and Engineering A, 2003, 355(1/2): 114-125. [6]Muktinutalapati N R. Materials for Gas Turbines-An Overview[M]// Benini E. Advances in Gas Turbine Technology. London: Intech Open Limited, 2011: 293-314. [7]孔令利, 贺瑞军, 张善庆. 真空正压气淬炉气淬冷却测试[J]. 热加工工艺, 2021, 50(2): 117-120. Kong Lingli, He Ruijun, Zhang Shanqing. Test of gas quenching and cooling in vacuum positive pressure gas quenching furnace[J]. Hot Working Technology, 2021, 50(2): 117-120. [8]戴贤创, 李振峰, 陈继光, 等. 镍基高温合金端淬梯度冷却过程中γ′相演化规律[J]. 中国有色金属学报, 2017, 27(2): 258-264. Dai Xianchuang, Li Zhenfeng, Chen Jiguang, et al. Gamma prime phase evolution rule during end quench cooling in nickel-based superalloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(2): 258-264. [9]刘宇佳, 李 勇, 付天亮, 等. 基于Fluent软件的辊底式热处理炉数值分析[J]. 金属热处理, 2014 , 39(8): 128-131. Liu Yujia, Li Yong, Fu Tianliang, et al. Simulation of roller hearth heat treatment furnace based on Fluent software[J]. Heat Treatment of Metals, 2014, 39(8): 128-131. [10]张祥林, 赵 杰, 张建平, 等. 超音速火焰喷涂气固两相流的数值模拟[J]. 金属热处理, 2011, 36(1): 100-106. Zhang Xianglin, Zhao Jie, Zhang Jianping, et al. Numerical simulation on gas-solid two-phase flow in high velocity oxygen fuel spraying process[J]. Heat Treatment of Metals, 2011, 36(1): 100-106. [11]陈艳梅, 冯俊小, 刘兴杰, 等. 基于 CFD 数值模拟的双P型辐射管烟气循环倍率分析[J]. 金属热处理, 2016, 41(3): 184-188. Chen Yanmei, Feng Junxiao, Liu Xingjie, et al. Flue gas circulating rate for double P-type radiant tube by CFD simulation [J]. Heat Treatment of Metals, 2016, 41(3): 184-188. [12]Schneider G E, Raw M J. Control volume finite-element method for heat transfer and fluid flow using colocated variables-1. Computational procedure[J]. Numerical Heat Transfer, Part A Applications, 1987, 11(4): 363-390. [13]Launder B E, Spalding D B. The numerical computation of turbulent flows[M]//Numerical prediction of flow, heat transfer, turbulence and combustion. Pergamon, 183: 96-116. [14]Eymard R, Gallouet T, Herbin R. Finite volume methods[J]. Handbook of Numerical Analysis, 2000, 7: 713-1018. |