金属热处理 ›› 2022, Vol. 47 ›› Issue (12): 258-268.DOI: 10.13251/j.issn.0254-6051.2022.12.043
刘张慧1,2, 胡海洋1, 王建刚1, 祝晓烨3, 马静1, 李建辉1, 于会超3, 冯志浩1,2
收稿日期:
2022-08-01
修回日期:
2022-10-22
出版日期:
2022-12-25
发布日期:
2023-01-05
通讯作者:
冯志浩,副教授,E-mail:zhfeng@hebust.edu.cn
作者简介:
刘张慧(1998—),女,硕士研究生,主要研究方向为钛锆合金表面改性,E-mail:liu15511607452@163.com。
基金资助:
Liu Zhanghui1,2, Hu Haiyang1, Wang Jiangang1, Zhu Xiaoye3, Ma Jing1, Li Jianhui1, Yu Huichao3, Feng Zhihao1,2
Received:
2022-08-01
Revised:
2022-10-22
Online:
2022-12-25
Published:
2023-01-05
摘要: 以锆合金的表面改性技术为主线,简述了目前改性方法的种类及研究现状,重点介绍了物理气相沉积、激光表面处理、阳极氧化、微弧氧化及离子注入等常用表面改性制备技术的原理、研究进展及优缺点。探讨了锆合金表面改性过程中需要解决的理论问题和需要攻克的技术瓶颈。最后,结合相关研究进展,对锆合金表面改性今后的研究工作和工程应用前景进行了展望。
中图分类号:
刘张慧, 胡海洋, 王建刚, 祝晓烨, 马静, 李建辉, 于会超, 冯志浩. 锆合金表面改性工艺的研究进展[J]. 金属热处理, 2022, 47(12): 258-268.
Liu Zhanghui, Hu Haiyang, Wang Jiangang, Zhu Xiaoye, Ma Jing, Li Jianhui, Yu Huichao, Feng Zhihao. Research progress on surface modification of zirconium alloys[J]. Heat Treatment of Metals, 2022, 47(12): 258-268.
[1]Zhang X, Zhang B, Liu S G, et al. Microstructure and mechanical properties of novel Zr-Al-V alloys processed by hot rolling [J]. Intermetallics, 2020, 116: 106639. [2]Feng Z, Dong H, Kang J, et al. Study on the correlation between microstructures and corrosion properties of novel ZrTiAlV alloys [J]. Materials Science and Engineering C, 2019, 101: 92-102. [3]冯志浩, 夏超群, 张新宇, 等. 高强韧锆合金的发展与应用 [J]. 材料科学与工艺, 2018, 26(2): 1-8. Feng Zhihao, Xia Chaoqun, Zhang Xinyu, et al. Development and applications of zirconium alloys with high strength and toughness[J]. Materials Science and Technology, 2018, 26(2): 1-8. [4]王月圆, 柴林江, 吴 璐, 等. 锆合金激光表面改性研究现状及展望 [J]. 重庆理工大学学报(自然科学), 2020, 34(9): 159-166. Wang Yueyuan, Chai Linjiang, Wu Lu, et al. Research status and prospect of laser surface modification of Zr alloys [J]. Journal of Chongqing University of Technology (Natural Science) , 2020, 34(9): 159-166. [5]Attia M H. On the fretting wear mechanism of Zr-alloys[J]. Tribology International, 2006, 39(10): 1320-1326. [6]曾 波, 范洪远, 常 鸿, 等. 锆合金包壳表面涂层的制备进展 [J]. 表面技术, 2019, 48(11): 106-113. Zeng Bo, Fan Hongyuan, Chang Hong, et al. Progress in preparation of zirconium alloy cladding surface coatings [J]. Surface Technology, 2019, 48(11): 106-113. [7]马 勇. ZnO薄膜制备及性质研究 [D].重庆: 重庆大学, 2004. Ma Yong. Study on film preparation and properties of ZnO[D]. Chongqing: Chongqing University, 2004. [8]Zhang L, Peng H, Qin Q, et al. Effects of annealing on hardness and corrosion resistance of 60NiTi film deposited by magnetron sputtering[J]. Journal of Alloys and Compounds, 2018, 746: 45-53. [9]云 璐, 郝 新. 退火温度对磁控溅射TiN/TiCN薄膜残余应力、结构及耐蚀性能的影响[J]. 金属热处理, 2021, 46(5): 166-170. Yun Lu, Hao Xin. Effect of annealing temperature on residual stress, structure and corrosion resistance of magnetron sputtering TiN /TiCN film [J]. Heat Treatment of Metals, 2021, 46(5): 166-170. [10]迟 迅, 宋长虹, 鲍君峰, 等. 磁控溅射制备钛基薄膜研究进展 [J]. 热喷涂技术, 2020, 12(2): 17-21. Chi Xun, Song Changhong, Bao Junfeng, et al. Research progress of titanium-based thin films prepared by magnetron sputtering [J]. Thermal Spray Technology, 2020, 12(2): 17-21. [11]林 宁, 李伟青, 康嘉杰, 等. 高导热涂层制备及其性能研究进展 [J]. 表面技术, 2021, 50(6): 128-137. Lin Ning, Li Weiqing, Kang Jiajie, et al. Research progress of preparation and performance of high thermal conductivity coatings [J]. Surface Technology, 2021, 50(6): 128-137. [12]Sidelev D V, Kashkarov E B, Syrtanov M S, et al. Nickel-Chromium (Ni-Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings [J]. Surface and Coatings Technology, 2019, 369: 69-78. [13]Yeom H, Maier B, Mariani R, et al. Magnetron sputter deposition of zirconium-silicide coating for mitigating high temperature oxidation of zirconium-alloy [J]. Surface and Coatings Technology, 2017, 316: 30-38. [14]王晓婧, 刘艳红, 冯 硕, 等. 锆合金表面磁控溅射制备SiC/Cr复合涂层的研究 [J]. 真空科学与技术学报, 2018, 38(4): 332-338. Wang Xiaojing, Liu Yanhong, Feng Shuo, et al. Synthesis and property characterization of magnetron sputtered SiC/Cr coatings on Zr-based alloy [J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(4): 332-338. [15]赵彦辉, 史文博, 刘忠海, 等. 沉积工艺参数对电弧离子镀薄膜沉积速率影响的研究进展 [J]. 真空与低温, 2020, 26(5): 385-391. Zhao Yanhui, Shi Wenbo, Liu Zhonghai, et al. Progress on effects of deposition processing parameters on coatings deposition rate for arc ion plating [J]. Vacuum and Cryogenics, 2020, 26 (5): 385-391. [16]Park J H, Kim H G, Park J, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J]. Surface and Coatings Technology, 2015, 280: 256-259. [17]胡小刚, 董 闯, 陈宝清, 等. 电弧离子镀制备耐事故包壳材料厚Cr涂层及高温抗氧化性能 [J]. 表面技术, 2019, 48(2): 207-219. Hu Xiaogang, Dong Chuang, Chen Baoqing, et al. Preparation and high temperature oxidation resistance of thick Cr coated on Zr-4 alloy by cathodic arc deposition for accident tolerant fuel claddings [J]. Surface Technology, 2019, 48(2): 207-219. [18]Kim H G, Kim I H, Jung Y I, et al. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs [J]. Journal of Nuclear Materials, 2018, 510: 93-99. [19]Zhong W, Mouche P A, Han X, et al. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions[J]. Journal of Nuclear Materials, 2016, 470: 327-338. [20]Feng Z, Ke P, Huang Q, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor [J]. Surface and Coatings Technology, 2015, 272: 380-386. [21]Maier B R, Garcia-Diaz B L, Hauch B, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding [J]. Journal of Nuclear Materials, 2015, 466: 712-717. [22]Tallman D J, Yang J, Pan L, et al. Reactivity of Zircaloy-4 with Ti3SiC2 and Ti2AlC in the 1100-1300 ℃ temperature range [J]. Journal of Nuclear Materials, 2015, 460: 122-129. [23]Meng C, Yang L, Wu Y, et al. Study of the oxidation behavior of CrN coating on Zr alloy in air [J]. Journal of Nuclear Materials, 2019, 515: 354-369. [24]吴亚文, 贺秀杰, 张继龙, 等. 锆合金表面CrAl基耐高温涂层及氧化行为研究 [J]. 表面技术, 2018, 47(9): 34-41. Wu Yawen, He Xiujie, Zhang Jilong, et al. CrAl-based high-temperature coatings on zirconium alloy and oxidation behavior [J]. Surface Technology, 2018, 47(9): 34-41. [25]Ma X F, Wu Y W, Tan J, et al. Evaluation of corrosion and oxidation behaviors of TiAlCrN coatings for nuclear fuel cladding [J]. Surface and Coatings Technology, 2019, 358: 521-530. [26]杨 振, 樊湘芳, 邱长军, 等. 锆合金表面涂层耐高温高压动水腐蚀性能的研究 [J]. 表面技术, 2019, 48(9): 204-210. Yang Zhen, Fan Xiangfang, Qiu Changjun, et al. High temperature and high pressure hydrodynamic corrosion of zirconium alloy surface coating [J]. Surface Technology, 2019, 48(9): 204-210. [27]严艳芹, 邱长军, 黄 鹤, 等. 热处理温度对Cr/Al涂层组织结构及性能的影响 [J]. 表面技术, 2017, 46(12): 78-83. Yan Yanqin, Qiu Changjun, Huang He, et al. Effects of heat treatment temperature on microstructure and properties of Cr/Al coatings [J]. Surface Technology, 2017, 46(12): 78-83. [28]董世运, 王茂才. 轻合金表面改性技术现状 [J]. 航空工程与维修, 1999(4): 43-45. Dong Shiyun, Wang Maocai. Present status of laser surface modification processes for light metal alloys [J]. Aviation Engineering and Maintenance, 1999(4): 43-45. [29]高光启, 王 勇, 占焕校, 等. 宽带激光熔凝过程温度场及残余应力数值分析 [J]. 中国表面工程, 2008(2): 15-19, 25. Gao Guangqi, Wang Yong, Zhan Huanxiao, et al. Numerical analysis of transient temperature field and stress distribution in laser wide-band melting process [J]. China Surface Engineering, 2008(2): 15-19, 25. [30]陈 星, 葛亚琼. Zr65Al7.5Ni10Cu17.5非晶合金激光熔凝的热效应模拟 [J]. 激光技术, 2020, 44(2): 202-205. Chen Xing, Ge Yaqiong. Simulation of thermal effect of Zr65Al7.5Ni10Cu17.5 amorphous alloy by laser melting [J]. Laser Technology, 2020, 44(2): 202-205. [31]Yao Y, Li X, Wang Y Y, et al. Microstructural evolution and mechanical properties of Ti-Zr beta titanium alloy after laser surface remelting [J]. Journal of Alloys and Compounds, 2014, 583: 43-47. [32]Ji P F, Li B, Liu S G, et al. Effect of laser surface re-melting on the microstructure and properties of Zr alloy [J]. Materials Letters, 2020, 264: 127352. [33]Chai L, Wu H, Wang S, et al. Characterization of microstructure and hardness of a Zr-2.5 Nb alloy surface-treated by pulsed laser [J]. Materials Chemistry and Physics, 2017, 198: 303-309. [34]Chai L, Chen K, Zhi Y, et al. Nanotwins induced by pulsed laser and their hardening effect in a Zr alloy [J]. Journal of Alloys and Compounds, 2018, 748: 163-170. [35]Chai L, Chen B, Wang S, et al. Microstructural changes of Zr702 induced by pulsed laser surface treatment [J]. Applied Surface Science, 2016, 364: 61-68. [36]Chai L J, Wang S Y, Wu H, et al. Bimodal plate structures induced by pulsed laser in duplex-phase Zr alloy [J]. Science China Technological Sciences, 2017, 60(4): 587-592. [37]杨胶溪, 贾无名, 王 欣, 等. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响 [J]. 材料工程, 2018, 46(8): 120-126. Yang Jiaoxi, Jia Wuming, Wang Xin, et al. Effect of laser melting treatment on microstructure and properties of Zr-1Nb nuclear fuel cladding [J]. Journal of Materials Engineering, 2018, 46(8): 120-126. [38]Kim H G, Kim I H, Jung Y I, et al. Microstructure and mechanical strength of surface ODS treated Zircaloy-4 sheet using laser beam scanning [J]. Nuclear Engineering and Technology, 2014, 46(4): 521-528. [39]Jung Y I, Kim H G, Guim H U, et al. Surface treatment to form a dispersed Y2O3 layer on Zircaloy-4 tubes [J]. Applied Surface Science, 2018, 429: 272-277. [40]马建光, 朱卫华, 朱红梅, 等. Zr-4合金表面激光熔覆不同类型TiN粉末的组织与性能 [J]. 金属热处理, 2017, 42(1): 115-119. Ma Jianguang, Zhu Weihua, Zhu Hongmei, et al. Microstructure and properties of laser cladding with different TiN powder on Zr-4 alloy surface [J]. Heat Treatment of Metals, 2017, 42(1): 115-119. [41]Dobbelstein H, Gurevich E L, George E P, et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy [J]. Additive Manufacturing, 2018, 24: 386-390. [42]赵子硕, 武美萍, 缪小进, 等. 激光功率对FeCoNiCrMo高熵合金/氧化石墨烯复合涂层组织及耐腐蚀性能的影响[J]. 金属热处理, 2022, 47(4): 251-257. Zhao Zishuo, Wu Meiping, Miao Xiaojin, et al. Effect of laser power on microstructure and corrosion resistance of FeCoNiCrMo high-entropy ally/graphene oxide composite coating [J]. Heat Treatment of Metals, 2022, 47(4): 251-257. [43]Guan H, Chai L, Wang Y, et al. Microstructure and hardness of NbTiZr and NbTaTiZr refractory medium-entropy alloy coatings on Zr alloy by laser cladding [J]. Applied Surface Science, 2021, 549: 149338. [44]林基辉, 温亚辉, 范文博, 等. 钛合金表面激光改性技术研究进展[J]. 金属热处理, 2022, 47(3): 215-221. Lin Jihui, Wen Yahui, Fan Wenbo, et al. Research progress of laser modification technology for titanium alloy surface [J]. Heat Treatment of Metals, 2022, 47(3): 215-221. [45]Lee S, Park C, Lim Y, et al. Influences of laser surface alloying with niobium (Nb) on the corrosion resistance of Zircaloy-4 [J]. Journal of Nuclear Materials, 2003, 321(2/3): 177-183. [46]张立杰, 范洪远, 吴 华, 等. Zr-4合金表面铌合金化处理的组织与性能 [J]. 金属热处理, 2007, 32(3): 72-74. Zhang Lijie, Fan Hongyuan, Wu Hua, et al. Microstructures and properties of Zr-4 alloy treated by surface niobium alloying [J]. Heat Treatment of Metals, 2007, 32(3): 72-74. [47]Chen K, Zeng L, Li Z, et al. Effects of laser surface alloying with Cr on microstructure and hardness of commercial purity Zr [J]. Journal of Alloys and Compounds, 2019, 784: 1106-1112. [48]陈 可. 激光表面Cr合金化对纯Zr微观组织及性能的影响研究 [D]. 重庆: 重庆理工大学, 2020. Chen Ke. Effect of laser surface alloying with Cr on microstructure and properties of commercial purity Zr [D]. Chongqing: Chongqing University of Technology, 2020. [49]Yang J, Wang X, Wen Q, et al. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy [J]. Journal of Nuclear Materials, 2015, 467: 186-193. [50]冯志浩, 逯昊燃, 孙信阳, 等. 一种提高锆基合金表面硬度的方法, 中国: CN110527935B[P]. 2021-03-16. [51]Feng Z H, Sun X Y, Han P B, et al. Microstructure and microhardness of a novel TiZrAlV alloy by laser gas nitriding at different laser powers [J]. Rare Metals, 2020, 39(3): 270-278. [52]Zhao X, Liu H, Li S, et al. Combined effect of TiN coating and surface texture on corrosion-wear behavior of selective laser melted CP-titanium in simulated body fluid [J]. Journal of Alloys and Compounds, 2020, 816: 152667. [53]孙洪吉, 韦 靖, 郑兆宏, 等. 激光工艺参数对激光熔化沉积纯钛样品残余应力的影响 [J]. 中国激光, 2019, 46(3): 123-129. Sun Hongji, Wei Jing, Zheng Zhaohong, et al. Effects of laser process parameters on residual stress of pure titanium samples prepared by laser melting deposition [J]. Chinese Journal of Lasers, 2019, 46(3): 123-129. [54]Xuan F Z, Cao L Q, Wang Z, et al. Mass transport in laser surface nitriding involving the effect of high temperature gradient: Simulation and experiment [J]. Computational Materials Science, 2010, 49(1): 104-111. [55]Tao Y F, Li J, Lv Y H, et al. Effect of heat treatment on residual stress and wear behaviors of the TiNi/Ti2Ni based laser cladding composite coatings [J]. Optics and Laser Technology, 2017, 97: 379-389. [56]徐荣清, 赵建玲, 王西新, 等. 阳极氧化法制备氧化锆纳米管阵列的研究 [J]. 材料工艺, 2009, 38(6): 1084-1086. Xu Rongqing, Zhao Jianling, Wang Xixin, et al. Fabrication of zirconia nanotube arrays by anodization [J]. Material Technology, 2009, 38(6): 1084-1086. [57]李 玲, 姚生莲, 赵晓丽, 等. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究 [J]. 金属学报, 2019, 55(8): 1008-1018. Li Ling, Yao Shenglian, Zhao Xiaoli, et al. Fabrication and properties of anodic oxide nanotubular arrays on Zr-17Nb alloy [J]. Acta Metallurgica Sinica, 2019, 55(8): 1008-1018. [58]Sowa M, Łastówka D, Kukharenko A I, et al. Characterisation of anodic oxide films on zirconium formed in sulphuric acid: XPS and corrosion resistance investigations [J]. Journal of Solid State Electrochemistry, 2017, 21(1): 203-210. [59]薛文斌, 金 乾, 朱庆振, 等. 锆合金表面微弧氧化陶瓷膜制备及特性分析 [J]. 材料热处理学报, 2010, 31(2): 119-122. Xue Wenbin, Jin Qian, Zhu Qingzhen, et al. Preparation and properties of ceramic coating formed by microarc oxidation on zirconium alloy [J]. Transactions of Materials and Heat Treatment, 2010, 31(2): 119-122. [60]Zou Z, Xue W, Jia X, et al. Effect of voltage on properties of microarc oxidation films prepared in phosphate electrolyte on Zr-1Nb alloy [J]. Surface and Coatings Technology, 2013, 222: 62-67. [61]徐 勃. 锆钛合金微弧氧化与激光表面改性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015. Xu Bo. Study on microarc oxidation and laser surface modification of Zi-Ti alloy [D]. Harbin: Harbin Institute of Technology, 2015. [62]万 千. 锆-4合金管内压力无损检测及离子注入对其耐蚀性能影响研究 [D]. 北京: 清华大学, 2006. Wan Qian. NDT methods of the pressure in the zircaloy-4 tube and effect of ion implantation on its corrosion behavior [D]. Beijing: Tsinghua University, 2006. [63]彭德全, 白新德, 陈小文, 等. 钼离子注入对锆-4合金耐腐蚀性的影响 [J]. 核技术, 2004, 27(9): 671-675. Peng Dequan, Bai Xinde, Chen Xiaowen, et al. Effect of molybdenum ion implantation on corrosion resistance of zircaloy-4 [J]. Nuclear Technique, 2004, 27(9): 671-675. [64]彭德全, 白新德, 周庆钢, 等. 镧离子注入对纯锆耐蚀性的影响 [J]. 核技术, 2004, 27(1): 35-37. Peng Dequan, Bai Xinde, Zhou Qinggang, et al. Effect of lanthanum ion implantation on the behavior of zirconium [J]. Nuclear Technique, 2004, 27(1): 35-37. [65]Peng D Q, Bai X D, Chen X, et al. Corrosion behavior of yttrium and cerium-implanted zirconium [J]. Rare Metal Materials and Engineering, 2004, 33(9): 918-923. [66]Peng D Q, Bai X D, Chen B S. Surface analysis and corrosion behavior of zirconium samples implanted with yttrium and lanthanum [J]. Surface and Coatings Technology, 2005, 190(2/3): 440-447. [67]陈小文, 白新德, 薛祥义, 等. 钇离子注入锆的动电位极化曲线研究 [J]. 稀有金属材料与工程, 2004, 33(2): 153-156. Chen Xiaowen, Bai Xinde, Xue Xiangyi, et al. Study on potentiodynamic polarization curves of yttrium-implanted zirconium [J]. Rare Metal Materials and Engineering, 2004, 33(2): 153-156. [68]Sharma P, Dhawan A, Sharma S K. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy [J]. Journal of Non-Crystalline Solids, 2019, 511: 186-193. [69]张聪惠, 刘大利, 兰新哲, 等. 锆合金氧化膜对腐蚀性能影响研究现状 [J]. 热加工工艺, 2011, 40(16): 117-120. Zhang Conghui, Liu Dali, Lan Xinzhe, et al. Study progress about effect of oxide film on corrosion resistance of zircaloy [J]. Hot Working Technology, 2011, 40(16): 117-120. [70]张小帆, 李鲁生, 马 旭, 等. 燃料元件Zr-4端塞与钽管的焊接技术研究及其应用 [J]. 核动力工程, 1998, 19(2): 79-82. Zhang Xiaofan, Li Lusheng, Ma Xu, et al. Welding technique research between fuel element Zr-4 end and tantalum tube and its application [J]. Nuclear Power Engineering, 1998, 19(2): 79-82. [71]赵文金, 苗 志, 蒋宏曼, 等. 表面处理对Zr-4合金抗疖状腐蚀性能的影响 [J]. 稀有金属, 1999, 23(6): 458-460. Zhao Wenjin, Miao Zhi, Jiang Hongman, et al. Effect of surface treatment on nodular corrosion of Zr-4 alloy [J]. Chinese Journal of Rare Metals, 1999, 23(6): 458-460. [72]马 静, 李 强, 毛 磊, 等. Zr-8Al合金酸性化学镀Ni-P镀层 [J]. 材料热处理学报, 2013, 34(1): 144-147. Ma Jing, Li Qiang, Mao Lei, et al. Ni-P coating by acidic electroless plating on Zr-8Al alloy [J]. Transactions of Materials and Heat Treatment, 2013, 34(1): 144-147. [73]国 栋, 肖福仁, 李 强, 等. Zr-Al二元合金的表面预处理及化学镀Ni-P工艺 [J]. 中国有色金属学报, 2013, 23(6): 1656-1660. Guo Dong, Xiao Furen, Li Qiang, et al. Chemical conversion treatment and electroless plating Ni-P on as-cast Zr-Al alloy [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(6): 1656-1660. [74]Terrani K A, Parish C M, Shin D, et al. Protection of zirconium by alumina-and chromia-forming iron alloys under high-temperature steam exposure [J]. Journal of Nuclear Materials, 2013, 438(1-3): 64-71. [75]宋凯强, 丛大龙, 何庆兵, 等. 先进冷喷涂技术的应用及展望 [J]. 装备环境工程, 2019, 16(8): 65-69. Song Kaiqiang, Cong Dalong, He Qingbing, et al. Application and prospect of advanced cold spray technology [J]. Equipment Environmental Engineering, 2019, 16(8): 65-69. [76]eveček M, Gurgen A, Seshadri A, et al. Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance [J]. Nuclear Engineering and Technology, 2018, 50(2): 229-236. [77]胡英俊, 黄小波, 高玉魁. 喷丸处理对锆合金微动磨损及抗腐蚀性能的影响 [J]. 表面技术, 2020, 49(7): 238-244, 254. Hu Yingjun, Huang Xiaobo, Gao Yukui. Effect of shot peening on fretting wear and corrosion resistance of zirconium alloy [J]. Surface Technology, 2020, 49(7): 238-244, 254. |
[1] | 陈志杰, 崔彤. Mg-4.0Zn-2.0Sr-0.4Ca合金复合涂层的耐腐蚀性能[J]. 金属热处理, 2022, 47(4): 213-218. |
[2] | 庄明塔, 徐睿思, 刘灿森, 揭晓华. 阳极氧化法构筑的铝基超疏水表面及其耐蚀性能[J]. 金属热处理, 2021, 46(9): 241-246. |
[3] | 范清松, 田航, 谢梦, 周军, 杨忠波, 赵文金. Zr-Sn-Nb-Fe锆合金板材轧制及热处理过程中的晶粒组织演变[J]. 金属热处理, 2021, 46(7): 47-50. |
[4] | 商鹏, 李景曼, 张艺海, 张杰, 夏磊, 张大卫. 钛合金表面激光熔覆CoCrMo强化涂层路径选择与质量分析[J]. 金属热处理, 2021, 46(5): 207-212. |
[5] | 吴宗佩, 杨忠波, 易伟. Zr-Sn-Nb-Fe合金的第二相颗粒粗化行为[J]. 金属热处理, 2020, 45(6): 89-92. |
[6] | 李高盛, 王婉琳, 马雪, 孔淑妍, 李怀林. 水射流表面改性对国产Zirlo锆合金包壳管加速腐蚀氧化膜形貌的影响[J]. 金属热处理, 2020, 45(6): 216-219. |
[7] | 杨攀, 张宏智, 张毅勇, 强瑞, 姜强, 赵勇, 肖亚. 再加工工艺对N18锆合金板残余应力的影响[J]. 金属热处理, 2020, 45(12): 106-110. |
[8] | 贾玉振, 邱军, 杨忠波. 轧制工艺对N36锆合金带材微观结构的影响[J]. 金属热处理, 2020, 45(11): 148-153. |
[9] | 周惦武, 武丹花, 汪浩, 刘金水, 张福全, 王练. 退火温度对新型锆合金薄板带材析出相和织构的影响[J]. 金属热处理, 2020, 45(1): 150-155. |
[10] | 张江斌, 陈愿情, 何克准, 李剑. 7055铝合金挤压材黑线缺陷分析[J]. 金属热处理, 2020, 45(1): 251-253. |
[11] | 刘 环,揭晓华,张艳梅,罗 松,卢国辉. 45钢表面微纳米多尺度结构制备及抗硫化粘污性能研究[J]. 金属热处理, 2017, 42(4): 159-162. |
[12] | 王允良1, 2,邓畅光2,詹肇麟1,张吉阜2. CMAS环境下PS-PVD 7YSZ涂层的抗热冲击性能及失效机制[J]. 金属热处理, 2017, 42(4): 175-179. |
[13] | 汲羽丹1,杜超博2. 汽车发动机缸体用AZ91合金的表面改性与耐磨耐蚀性能[J]. 金属热处理, 2016, 41(11): 118-123. |
[14] | 张林伟1,张 旭2,余玖明1,邹 晋1,陆德平1,陆 磊1. T8钢的脉冲爆炸-等离子体处理表面改性[J]. 金属热处理, 2016, 41(10): 84-89. |
[15] | 潘钱付,蒋明忠,戴训,王贯春,黄照华,赵文金. 退火方式对N36锆合金包壳管性能的影响[J]. 金属热处理, 2015, 40(12): 135-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn