金属热处理 ›› 2023, Vol. 48 ›› Issue (2): 17-22.DOI: 10.13251/j.issn.0254-6051.2023.02.003

• 组织与性能 • 上一篇    下一篇

Cr-Ni-Cu桥梁耐候钢的连续冷却相变及其组织和硬度

王新志1, 张可1,2, 黄重1, 徐党委1, 杜海明1, 章小峰2, 张熹3   

  1. 1.安阳钢铁集团有限责任公司, 河南 安阳 455004;
    2.安徽工业大学 冶金工程学院, 安徽 马鞍山 243032;
    3.天津大桥焊材集团有限公司, 天津 300385
  • 收稿日期:2022-09-22 修回日期:2022-12-20 出版日期:2023-02-25 发布日期:2023-03-22
  • 通讯作者: 张 可,副教授,博士,E-mail: huzhude@yeah.net
  • 作者简介:王新志 (1976—), 男,高级工程师,硕士,主要研究方向为特殊钢质量管理与产品开发,E-mail:364822438@qq.com。
  • 基金资助:
    河南省博士后科研启动项目(202103098);国家自然科学基金(51704008)

Continuous cooling transformation of Cr-Ni-Cu bridge weathering steel and its microstructure and hardness

Wang Xinzhi1, Zhang Ke1,2, Huang Zhong1, Xu Dangwei1, Du Haiming1, Zhang Xiaofeng2, Zhang Xi3   

  1. 1. Anyang Iron & Steel Group Co., Ltd., Anyang Henan 455004, China;
    2. School of Metallurgical Engineering, Anhui University of Technology, Maanshan Anhui 243032, China;
    3. Tianjin Bridge Welding Materials Group Co., Ltd., Tianjin 300385, China
  • Received:2022-09-22 Revised:2022-12-20 Online:2023-02-25 Published:2023-03-22

摘要: 为了掌握Cr-Ni-Cu桥梁耐候钢在连续冷却过程中组织及硬度的变化及其原因,借助JMatPro软件模拟计算了连续冷却转变(CCT)曲线和等温转变(TTT)曲线,采用Gleeble-3800热模拟试验机、金相显微镜、扫描电镜和硬度计等试验手段研究了Cr-Ni-Cu桥梁耐候钢在不同冷却速度下的微观组织和硬度的变化,探讨了冷却速度对组织、硬度及相变行为的影响。结果表明,对Cr-Ni-Cu桥梁耐候钢进行1050 ℃和860 ℃两阶段高温变形后,随着冷却速度由0.1 ℃/s增加至30 ℃/s,组织依次为多边形铁素体+珠光体→多边形铁素体+贝氏体→粒状贝氏体→粒状贝氏体+马氏体,硬度由155 HV0.2增加至373 HV0.2。当冷却速度由0.1 ℃/s增加至3 ℃/s,硬度的增加主要是由于多边形铁素体晶粒的细化。当冷却速度由5 ℃/s增加至30 ℃/s,硬度的增大主要来自于贝氏体组织的不断细化和马氏体含量的不断增加。

关键词: 桥梁耐候钢, 连续冷却相变, 冷却速度, 硬度, 贝氏体

Abstract: In order to understand the changes of microstructure and hardness of Cr-Ni-Cu bridge weathering steel during continuous cooling transformation (CCT) and the causes, the CCT curves and time-temperature-transformation(TTT) curves were simulated and calculated by the JMatPro software. Microstructure and hardness of the Cr-Ni-Cu bridge weathering steel during CCT process were investigated by means of Gleeble-3800 hot-simulated test machine, optical microscope (OM), scanning electron microscope (SEM) and hardness tester, and the influencing mechanisms of cooling rate on microstructure, hardness and phase transformation behavior were discussed. The results show that after 1050 ℃ and 860 ℃ two-stage high temperature deformation, as the cooling rate increases from 0.1 ℃/s to 30 ℃/s, the microstructures of Cr-Ni-Cu bridge weathering steel are successively evolving from polygonal ferrite+pearlite→polygonal ferrite+bainite→granular bainite→granular bainite+martensite, and the hardness increases gradually from 155 HV0.2 to 373 HV0.2. When the cooling rate increases from 0.1 ℃/s to 3 ℃/s, the increase of hardness is mainly due to the refinement of polygonal ferrite grains. While the cooling rate increases from 5 ℃/s to 30 ℃/s, the increase of hardness is attributed to the continuous refinement of bainite microstructure and the consistent increase of martensite content.

Key words: bridge weathering steel, continuous cooling transformation, cooling rate, hardness, bainite

中图分类号: