[1]艾 键, 曾亚飞. 石油天然气管道腐蚀及其防护措施分析[J]. 化工设计通讯, 2018, 44(1): 1. Ai Jian, Zeng Yafei. Analysis on corrosion and protective measures of oil and gas pipelines[J]. Chemical Design Communication, 2018, 44 (1): 1 [2]Jeon H H, Lee S M, Han J, et al. The effect of Zn coating layers on the hydrogen embrittlement of hot-dip galvanized twinning-induced plasticity steel[J]. Corrosion Science, 2016, 111: 267-274. [3]Bondareva O S, Melnikov A A. Improving the quality of the coating at hot-dip galvanizing of machine steels in the zinc melt with microadditives of nickel[J]. Key Engineering Materials, 2016, 685: 380-384. [4]谭 笑, 刘少柱, 吴晓光, 等. 中俄东线天然气管道焊接消磁技术试验[J]. 油气储运, 2020, 39(1): 79-85. Tan Xiao, Liu Shaozhu, Wu Xiaoguang, et al. Test on the degaussing technology used in the welding of China-Russia eastern gas pipe[J]. Oil & Gas Storage and Transportation, 2020, 39(1): 79-85. [5]Li Y, Liu J, Zhang J, et al. Corrosion resistance of steel with hot-dipped galvanized zinc and zinc alloy coatings in seawater[J]. Materials & Corrosion, 2015, 58(5): 376-381. [6]Alvarenga E D A, Lins V D F C. Atmospheric corrosion evaluation of electrogalvanized, hot-dip galvanized and galvannealed interstitial free steels using accelerated field and cyclic tests[J]. Surface & Coatings Technology, 2016, 16(306): 428-438. [7]Li F, Liu H, Shi W, et al. Hot dip galvanizing behavior of advanced high strength steel[J]. Materials & Corrosion, 2015, 11(5): 396-400. [8]Yuan Z, Fan J, Jing L, et al. Surface tension of molten bismuth at different oxygen partial pressure with the sessile drop method[J]. Scandinavian Journal of Metallurgy, 2010, 25(6): 338-346. [9]Sansoucie M P, Rogers J R, Kumar V, et al. Effects of environmental oxygen content and dissolved oxygen on the surface tension and viscosity of liquid nickel[J]. International Journal of Thermophysics, 2016, 34(7): 1-11. [10]徐其林, 朱中喜, 尹付成. 热浸镀锌浴中的Ni, Sb对合金镀层组织的影响[J]. 材料保护, 2015, 27(12): 20-22. Xu Qilin, Zhu Zhongxi, Yin Fucheng. Effect of Ni and Sb in hot dip galvanizing bath on microstructure of alloy coating[J]. Materials Protection, 2015, 27(12): 20-22. [11]Chang S, Shin J C. The effect of antimony additions on hot dip galvanized coatings[J]. Corrosion Science, 1994, 67(8): 1425-1436. [12]解 凯, 贺志荣, 王永善, 等. Bi含量对热浸镀Zn-Bi合金镀层形貌和性能的影响[J]. 金属热处理, 2014, 53(10): 80-83. Xie Kai, He Zhirong, Wang Yongshan, et al. Effect of Bi on morphology and properties of Zn-Bi alloy hot-dip galvanizing coating[J]. Heat Treatment of Metals, 2014, 53(10): 80-83. [13]Fratesi R, Ruffini N, Malavolta M, et al. Contemporary use of Ni and Bi in hot-dip galvanizing[J]. Surface & Coatings Technology, 2002, 157(1): 34-39. [14]Li Zhiwei, Peng Haoping, Wang Jianhua, et al. Effect of ball-milling pretreatment on microstructure and corrosion of hot-dip galvanized coating[J]. Materials Characterization, 2022, 192: 112177. [15]Pistofidis N, Vourlias G, Konidaris S, et al. The combined effect of nickel and bismuth on the structure of hot-dip zinc coatings[J]. Materials Letters, 2007, 61(10): 2007-2010. [16]刘春梅. Zn-Bi-Fe-Ni四元系相关系的测定及Bi对镀层组织和耐蚀性的影响[D]. 湘潭: 湘潭大学, 2009. Liu Chunmei. The phase relations of the Zn-Bi-Fe-Ni quaternary system and the effect of Bi on the microstructure and the corrosion resistance of the galvanized coating[D]. Xiangtan: Xiangtan University, 2009. [17]Shen P, Zhang L, Zhou H, et al. Wettability between Fe-Al alloy and sintered MgO[J]. Ceramics International, 2017, 43(10): 7674-7681. [18]Li Zhiwei, Wang Jianhua, Peng Haoping, et al. The influence of Al on the surface properties of the hot-dip galvanized melt[J]. Journal of Wuhan University of Technology, 2022, 37(1): 117-122. [19]方 亮, 肖 锋, 陶再南. 用改良静滴法测量液态Ni-W二元合金的密度[J]. 稀有金属材料与工程, 2004, 13(12): 1261-1265. Fang Liang, Xiao Feng, Tao Zainan. Density of liquid binary Ni-W alloys measured by modified sessile drop method[J]. Rare Metal Materials and Engineering, 2004, 13(12): 1261-1265. [20]陈安涛, 张胜全, 王 胜. 静滴法测表面张力中各参数的确定[J]. 热加工工艺, 2013, 24(14): 43-45. Chen Antao, Zhang Shengquan, Wang Sheng. Parameters in surface tension measured by sessile drop method[J]. Hot Working Technology, 2013, 24(14): 43-45. [21]钱国统, 彭 孜, 宋雪明, 等. 电脑图形处理在静滴法测量液态金属表面张力中的应用[J]. 特种铸造及有色合金, 2011, 31(1): 22-24. Qian Guotong, Peng Zi, Song Xueming, et al. Application of computer graphic processing in measuring surface tension of liquid metal by static drop method[J]. Special Casting and Nonferrous Alloys, 2011, 31(1): 22-24. [22]Tsepelev V, Vyukhin V, Povodator A. The unit for determining the density and surface tension of metallic liquid alloys, using the sessile drop method[J]. Materials Science Forum, 2017, 889: 108-112. [23]崔德荣, 雷 云, 李智伟, 等. Sb对锌液与X80钢表面润湿性影响的研究[J]. 表面技术, 2020, 14(3): 280-285. Cui Derong, Lei Yun, Li Zhiwei, et al. Effect of Sb on surface wettability of zinc liquid and X80 steel[J]. Surface Technology, 2020, 14(3): 280-285. [24]Aziz K, Schmon A, Kaschnitz E, et al. Measurement of surface tension of Cu-5Sn by an oscillating drop technique[J]. International Journal of Thermophysics, 2016, 37(2): 1-8. [25]Pistofidis N, Vourlias G, Konidaris S, et al. The effect of bismuth on the structure of zinc hot-dip galvanized coatings[J]. Materials Letters, 2007, 61(4): 994-997. [26]孔 纲, 卢锦堂, 陈锦虹, 等. 锌浴中元素对钢结构件热镀锌的影响[J]. 表面技术, 2003, 7(4): 7-11. Kong Gang, Lu Jintang, Chen Jinhong, et al. Effect of elements in zinc bath on batch hot dip galvanizing[J]. Surface Technology, 2003, 7(4): 7-11. [27]Li Zhiwei, Peng Haoping, Wang Jianhua, et al. Effect of surface micromorphology and roughness of iron ingot on microstructure of hot-dip galvanized coating[J]. Transactions of the Indian Institute of Metals, 2022, 75(2): 397-406. [28]Fratesi R, Ruffini N, Malavolta M, et al. Contemporary use of Ni and Bi in hot-dip galvanizing[J]. Surface & Coatings Technology, 2002, 157(1): 34-39. [29]Lekbir C, Dahoun N, Guetitech A, et al. Effect of immersion time and cooling mode on the electrochemical behavior of hot-dip galvanized steel in sulfuric acid medium[J]. Journal of Materials Engineering & Performance, 2017, 26(6): 2502-2511. [30]Kania H. The impact of Al addition to a Zn-Al bath upon growth kinetics and structure of coatings obtained in the batch double hot dip process[J]. Solid State Phenomena, 2016, 246: 131-134. [31]Murakami R, Oikawa K, Kamada K, et al. Investigation of crystal shape controllability in the micro-pulling-down method for low-wettability systems[J]. ACS Omega, 2021, 6(12): 8131-8141. [32]Wang S X, He S, Wang X Q, et al. Research on melt wettability measurements under microgravity[J]. Microgravity Science and Technology, 2021, 33(1): https://doi. org/10. 1007/s12217-020-09860-6. [33]Zheng Z, Huang P, Wang F. Reversible switching of wettability based on shape memory effect[J]. Materials Letters, 2021, 301: 130270. [34]Horozov T S, Dushkin C D, Danov K D, et al. Effect of the surface expansion and wettability of the capillary on the dynamic surface tension measured by the maximum bubble pressure method[J]. Colloids & Surfaces A-Physicochemical & Engineering Aspects, 1996, 113(1-2): 117-126. [35]Alizadeh R, Mahmudi R. Effect of Sb additions on the microstructural stability and mechanical properties of cast Mg-4Zn alloy[J]. Materials Science and Engineering: A, 2010, 527(20): 5312-5317. |