[1]马 涛, 李慧蓉, 高建新, 等. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164. Ma Tao, Li Huirong, Gao Jianxin, et al. Progress on strengthening mechanism and tensile properties of Fe-Mn-Al-C low density steel and prospect of Nb microalloying[J]. Materials Reports, 2020, 34(23): 23154-23164. [2]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076. [3]刘少尊, 厉 勇, 王春旭, 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120-124. Liu Shaozun, Li Yong, Wang Chunxu, et al. Effects of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treatment of Metals, 2015, 40(9): 120-124. [4]张磊峰, 宋仁伯, 赵 超, 等. 新型汽车用钢—低密度高强韧钢的研究进展[J]. 材料导报, 2014, 28(19): 111-118, 129. Zhang Leifeng, Song Renbo, Zhao Chao, et al. Research progress of new automotive steel-low-density high strength-toughness steel[J]. Materials Review, 2014, 28(19): 111-118, 129. [5]王英虎. 固溶温度对Fe-12Mn-8.5Al-0.8C低密度钢组织及力学性能的影响[J]. 金属热处理, 2019, 44(8): 185-191. Wang Yinghu. Effect of solid-solution temperature on microstructure and tensile properties of Fe-12Mn-8.5Al-0.8C low-density steel[J]. Heat Treatment of Metals, 2019, 44(8): 185-191. [6]武会宾, 尚成嘉, 赵运堂, 等. 回火对低碳贝氏体钢组织稳定性及力学性能的影响[J]. 钢铁, 2005, 40(3): 62-65. Wu Huibin, Shang Chengjia, Zhao Yuntang, et al. Effect of tempering on stability of microstructure and mechanical properties of low carbon bainitic steel[J]. Iron & Steel, 2005, 40(3): 62-65. [7]刘春泉, 彭其春, 薛正良, 等. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581. Liu Chunquan, Peng Qichun, Xue Zhengliang, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel[J]. Materials Reports, 2019, 33(15): 2572-2581. [8]徐越鹏. 热处理对汽车用高强低密度钢组织及性能的影响[D]. 重庆: 重庆大学, 2017. [9]郭芳辉, 李俊儒, 张鹏飞, 等. 60Mn3Al3Ni2CrVNb调质型低密度钢奥氏体晶粒长大行为[J]. 材料热处理学报, 2021, 42(8): 76-83. Guo Fanghui, Li Junru, Zhang Pengfei, et al. Austenite grain growth behavior of 60Mn3Al3Ni2CrVNb quenched and tempered low density steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 76-83. [10]罗 翔. Fe-28Mn-10Al-0. 8C低密度高强钢组织与力学性能研究[D]. 昆明: 昆明理工大学, 2017. [11]Alireza Rahnama, Hiren Kotadia, Seetharaman Sridhar. Effect of Ni alloying on the microstructural evolution and mechanical properties of two duplex light-weight steels during different annealing temperatures: Experiment and phase-field simulation[J]. Acta Materialia, 2017, 132: 627-643. [12]江志华, 金建军, 王晓震, 等. 一种1350 MPa级低密度高强度钢的组织性能[J]. 航空材料学报, 2018, 38(5): 67-73. Jiang Zhihua, Jin Jianjun, Wang Xiaozhen, et al. Microstructure and properties of a low-density steel with high strength of 1350 MPa[J]. Journal of Aeronautical Materials, 2018, 38(5): 67-73. [13]陈兴润, 王 珂, 赵得江, 等. 加热温度对308L奥氏体不锈钢铸坯组织及高温热塑性的影响[J]. 塑性工程学报, 2021, 28(8): 154-160. Chen Xingrun, Wang Ke, Zhao Dejiang, et al. Effect of heating temperature on microstructure and high temperature ductility of 308L austenitic stainless steel casting billets[J]. Journal of Plasticity Engineering, 2021, 28(8): 154-160. [14]王程明, 安治国, 孙晓冉, 等. 高铁刹车盘用CrMoV钢的高温热塑性[J]. 金属热处理, 2021, 46(1): 204-208. Wang Chengming, An Zhiguo, Sun Xiaoran, et al. Hot ductility of brake disc CrMoV steel for high speed railway[J]. Heat Treatment of Metals, 2021, 46(1): 204-208. |