[1]李光瀛, 马鸣图. 我国汽车板生产现状及展望[J]. 轧钢, 2014, 31(4): 22-32. Li Guangying, Ma Mingtu. Auto steels production in China-status and prospect[J]. Steel Rolling, 2014, 31(4): 22-32. [2]Cai Z H, Ding H, Misra R, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Materialia, 2015, 84: 229-236. [3]Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels[J]. Acta Materialia, 2018, 148: 249-262. [4]王存宇, 常 颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410. Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020, 56(4): 400-410. [5]Miller R L. Ultrafine-grained microstructures and mechanical properties of alloy steels[J]. Metallurgical and Materials Transactions B, 1972, 3(4): 905-912. [6]Osamu M, Yasuhiro S, Hiroshi T. Retainedaustenite in 0.4C-Si-1.2Mn steel sheet intercritically heated and austempered[J]. ISIJ International, 1992, 32(9): 1014-1020. [7]Furukawa T, Huang H, Matsumura O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity[J]. Materials Science and Science Technology, 1994, 10(11): 964-970. [8]Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum[J]. Scripta Materialia, 2013, 68(6): 365-369. [9]Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3A1-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Materials Science & Engineering: A, 2016, 673: 63-72. [10]王亚婷, 万德成, 冯树明, 等. 淬火温度对中锰QP钢组织和性能的影响[J]. 金属热处理, 2020, 45(5): 172-176. Wang Yating, Wan Decheng, Feng Shuming, et al. Effect of quenching temperature on microstructure and mechanical properties of medium manganese QP steel[J]. Heat Treatment of Metals, 2020, 45(5): 172-176. [11]Suh D W, Park S J, Lee T H, et al. Influence of Al on themicrostructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel[J]. Metallurgical and Materials Transactions A, 2010, 41: 397-408. [12]Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties ofintercritically annealed Fe-9Mn-0.05C steel[J]. Acta Materialia, 2014, 78: 369-377. [13]蔡志辉, 李志超, 才 博, 等. Fe-8/11Mn-4Al-0.2C钢的力学性能及应变硬化行为[J]. 东北大学学报: 自然科学版, 2017, 38(2): 224-228. Cai Zhihui, Li Zhichao, Cai Bo, et al. Mechanical properties and strain hardening behavior of Fe-8/11Mn-4Al-0.2C steels[J]. Journal of Northeastern University Natural Science, 2017, 38(2): 224-228. [14]Zhou T P, Wang C Y, Wang C, et al. Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel[J]. Materials Science & Engineering: A, 2020, 798: 140-147. [15]Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013, 68(5): 321-324. [16]Sugimoto K I, Kobayashi M, Hashimoto S I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel[J]. Metallurgical Transactions A, 1992, 23(11): 3085-3091. |