[1]Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface[J]. Acta Materialia, 2019, 178(7): 10-25. [2]Souza Filho I R, Sandim M J R, Ponge D, et al. Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture[J]. Materials Science and Engineering A, 2019, 754(29): 636-649. [3]Lin X P, Dang Y Z, Dai P L, et al. Microstructure control and strengthening mechanism of fine-grained cast Mg alloys based on grain boundary segregation of Al solute[J]. Materials Science and Engineering A, 2022, 851: 143665. [4]Zhou J H, Shen Y F, Hong Y Y, et al. Strengthening a fine-grained low activation martensitic steel by nanosized carbides[J]. Materials Science and Engineering A, 2020, 769: 138471. [5]Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles[J]. Scripta Materialia, 2005, 52(11): 1075-1080. [6]谢 盼. 含锰 TRIP/TWIP 钢的强韧化研究[D]. 长沙: 湖南大学, 2018. Xie Pan. Study on strengthening and toughening of TRIP/TWIP Steel containing manganese[D]. Changsha: Hunan University, 2018. [7]Lu L, You Z S, Lu K. Work hardening of polycrystalline Cu with nanoscale twins[J]. Scripta Materialia, 2012, 66(11): 837-842. [8]Park H W, Yanagimoto J. Formation process and mechanical properties of 0.2% carbon steel with bimodal microstructures subjected to heavy-reduction single-pass hot/warm compression[J]. Materials Science and Engineering A, 2013, 567: 29-37. [9]刘俊芳. HDDR-SPS-挤压制备双峰组织镁及微观组织和力学性能分析[D]. 太原: 太原理工大学, 2017. Liu Junfang. Preparation of bimodal magnesium by HDDR-SPS- extrusion and analysis of microstructure and mechanical properties[D]. Taiyuan: Taiyuan University of Technology, 2017. [10]Ning J L, Feng Y L, Wang M M, et al. Dependence of tensile properties on microstructural features of bimodal-sized ferrite/cementite steels[J]. Journal of Iron and Steel Research International, 2017, 24(1): 67-76. [11]田亚强, 黎 旺, 郑小平, 等. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118. Tian Yaqiang, Li Wang, Zheng Xiaoping, et al. Application of alloy elements in quenching and partitioning steel: An overview[J]. Materials Reports, 2019, 33(7): 1109-1118. [12]Liu S T, Ku H Y, Huang C L, et al. Improvements in Li deposition and stripping induced by Cu (111) nanotwinned columnar grains[J]. Electrochimica Acta, 2022, 430: 141011. [13]Hearn W, Lindgren K, Persson J, et al. In situ tempering of martensite during laser powder bed fusion of Fe-0. 45C steel[J]. Materialia, 2022, 23: 101459. [14]Ragger K S, Primig S, Daniel R, et al. Cold pilgering of duplex steel tubes: The response of austenite and ferrite to excessive cold deformation up to high strains[J]. Materials Characterization, 2017, 128: 257-268. [15]Ghorabaei A S, Nili-Ahmadabadi M. Effects of prior austenite grain size and phase transformation temperature on bainitic ferrite formation in multi-constituent microstructures of a strong ultra-low-carbon steel[J]. Materials Science and Engineering A, 2021, 815: 141300. [16]Li H B, Zheng X P, Wan D C, et al. Effect of time interval on microstructure evolution of medium carbon steel during warm deformation[J]. Journal of Iron and Steel Research International, 2019, 26(6): 602-610. [17]Kim Y J, Asghari-Rad P, Lee J W, et al. Solid solution induced back-stress in multi-principal element alloys: Experiment and modeling[J]. Materials Science and Engineering A, 2022, 835: 142621. |