[1]林振浩, 钱锦远, 李文庆, 等. 高温阀门的研究进展[J]. 机电工程, 2020, 37(7): 729-735. Lin Zhenhao, Qian Jinyuan, Li Wenqing, et al. Research progress of high temperature valves[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(7): 729-735. [2]Shoji Takada, Kenji Abe, Yoshiyuki Inagaki. Conceptual structure design of high temperature isolation valve for high temperature gas cooled reactor[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(11): 45011-45013. [3]姚怀宇, 蒋诚航, 金志江, 等. 阀门失效的研究进展[J]. 流体机械, 2021, 49(10): 74-83, 90. Yao Huaiyu, Jiang Chenghang, Jin Zhijiang, et al. Research progress on valve failure[J]. Fluid Machinery, 2021, 49(10): 74-83, 90. [4]于龙杰, 钱锦远, 金志江. 阀门密封性能的研究进展[J]. 润滑与密封, 2021, 46(9): 134-142, 153. Yu Longjie, Qian Jinyuan, Jin Zhijiang. Research progress on sealing performance of valve[J]. Lubrication Engineering, 2021, 46(9): 134-142, 153. [5]安 辉, 张爽松. 蒸馏装置应用SF-5T合金作阀门的密封面材料抵抗环烷酸腐蚀[J]. 石油炼制与化工, 2002, 33(10): 48-51. An Hui, Zhang Shuangsong. Applying SF-5T alloy as valve sealing material to resist naphthenic acid corrosion in distillation unit[J]. Petroleum Processing and Petrochemicals, 2002, 33(10): 48-51. [6]时 兵, 金 烨. 600 MW汽轮机组再热主汽阀门阀杆的热胀及其影响[J]. 动力工程学报, 2008, 28(4): 573-578. Shi Bing, Jin Ye. Study on the stem heat expansion and Its influence of the reheat stop valve in 600 MW steam turbine unit[J]. Journal of Power Engineering, 2008, 28(4): 573-578. [7]Shaikh Asad Ali Dilawary, Amir Motallebzadeh, Ahmet Hilmin Paksoy, et al. Influence of laser surface melting on the characteristics of Stellite 12 plasma transferred arc hardfacing deposit[J]. Surface and Coatings Technology, 2017, 317: 110-116. [8]Amir Motallebzadeh, Shaikh Asad Ali Dilawary, Erdem Atar, et al. High-temperature oxidation of Stellite 12 hardfacings: Effect of Mo on characteristics of oxide scale[J]. Journal of Materials Engineering and Performance, 2019, 28(1): 463-474. [9]Alexander Renz, Braham Prakash, Jens Hardell, et al. High-temperature sliding wear behaviour of Stellite(R) 12 and Tribaloy(R) T400[J]. Wear, 2018, 402: 148-159. [10]苗文卷, 曹 睿, 车洪艳, 等. Stellite 12钴基合金的疲劳性能及其断裂机理研究[J]. 材料工程, 2021, 49(1): 153-159. Miao Wenjuan, Cao Rui, Che Hongyan, et al. Fatigue properties and fracture mechanism of Stellite12 cobalt-based alloy[J]. Journal of Materials Engineering, 2021, 49(1): 153-159. [11]Anas Ahmad Siddiqui, Avanish Kumar Dubey. Recent trends in laser cladding and surface alloying[J]. Optics and Laser Technology, 2021, 134: 106619. [12]Cui Chen, Wu Meiping. Investigation of the friction and corrosion behavior of laser-clad cobalt-based coatings in sea water[J]. Metal Science and Heat Treatment of Metals, 2021, 63(7): 444-448. [13]徐国建, 黄 雪, 杭争翔, 等. 激光和TIG堆焊钴基合金的性能[J]. 焊接学报, 2013, 34(8): 22-26, 114. Xu Guojian, Huang Xue, Hang Zhengxiang, et al. Characteristics of Co-based clad layer formed by laser and TIG cladding[J]. Transactions of the China Welding Institution, 2013, 34(8): 22-26, 114. [14]姚宁娟, 陆 伟, 陈 铠, 等. 激光熔覆技术制造热轧辊的钴基合金层研究[J]. 中国激光, 2003, 30(8): 759-762. Yao Ningjuan, Lu Wei, Chen Kai, et al. Study on Co-based alloy coatings of hot roller made by laser cladding[J]. Chinese Journal of Lasers, 2003, 30(8): 759-762. [15]陈 浩, 刘传云, 潘春旭, 等. 激光熔覆钴基合金的凝固组织特征及性能研究[J]. 金属热处理, 2001, 26(12): 10-13. Chen Hao, Liu Chuanyun, Pan Chunxu, et al. Study on solidification microstructure and properties of cobalt-based alloy laser cladding layer[J]. Heat Treatment of Metals, 2001, 26(12): 10-13. [16]刘福广, 李 勇, 杨二娟, 等. 超(超)临界核阀用耐热钢激光熔覆钴基合金修复研究[J]. 激光与光电子学进展, 2021, 58(5): 220-228. Liu Fuguang, Li Yong, Yang Erjuan, et al. A research on laser cladding Co-based alloy to repair heat resistant steel of the valves used in ultra-super critical nuclear power plants[J]. Laser & Optoelectronics Progress, 2021, 58(5): 220-228. [17]Song Boxue, Yu Tianbiao, Jiang Xingyu, et al. Development mechanism and solidification morphology of molten pool generated by laser cladding[J]. International Journal of Thermal Sciences, 2021, 159: 106579. [18]Chen Liaoyuan, Zhao Yu, Song Boxue, et al. Modeling and simulation of 3D geometry prediction and dynamic solidification behavior of Fe-based coatings by laser cladding[J]. Optics and Laser Technology, 2021, 139: 107009. [19]Xiang Sisi, Mao Shengcheng, Shen Zheju, et al. Site preference of metallic elements in M23C6 carbide in a Ni-based single crystal superalloy[J]. Materials & Design, 2017, 129: 9-14. [20]颜鸣皋, 陈学印. 镍基高温合金的强化[J]. 金属学报, 1964, 7(3): 307-321. Yan Mingkao, Chen Xueying. On the strengthening of nickel-base superalloys[J]. Acta Metallurgica Sinica, 1964, 7(3): 307-321. [21]Ding Y P, Liu R, Wang L, et al. Corrosion and wear performance of Stellite alloy hardfacing prepared via laser cladding[J]. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56(2): 392-404. [22]史胜凤, 林 军, 周 炳, 等. 医用钴基合金的组织结构及耐腐蚀性能[J]. 稀有金属材料与工程, 2007, 36(1): 37-41. Shi Shengfeng, Lin Jun, Zhou Bing, et al. Microstructure and corrosion resistance of medical cobalt-based alloys[J]. Rare Metal Materials and Engineering, 2007, 36(1): 37-41. [23]张志伟, 刘素芬, 李兆杰, 等. 304奥氏体不锈钢腐蚀失效原因分析及组织表征[J]. 金属热处理, 2019, 44(S1): 96-102. Zhang Zhiwei, Liu Sufen, Li Zhaojie, et al. Cause analysis and microstructure characterization of corrosion failure of 304 austenitic stainless steel[J]. Heat Treatment of Metals, 2019, 44(S1): 96-102. [24]张 庆. 热处理对AISI 310S不锈钢在不同介质中的腐蚀磨损行为的影响[D]. 镇江: 江苏大学, 2016. Zhang Qing. Effect of heat treatment on the corrosion-wear behavior of AISI 310S stainless steels in different medium[D]. Zhenjiang: Jiangsu University, 2016. [25]Liu Rong, Yao Jianhua, Zhang Qunli, et al. Effects of molybdenum content on the wear/erosion and corrosion performance of low-carbon Stellite alloys[J]. Materials & Design, 2015, 78: 95-106. |