[1]赵林林, 刘 需, 年保国. 先进高强钢氢致断裂的研究[J]. 河北冶金, 2020(5): 7-10. Zhao Linlin, Liu Xu, Nian Baoguo. Research of hydrogen induced fracture in advanced high strength steel[J]. Hebei Metallurgy, 2020(5): 7-10. [2]周景一, 朱立光, 孙立根, 等. Nb微合金化汽车用TWIP钢的研究进展[J]. 中国冶金, 2022, 33(3): 9-16. Zhou Jingyi, Zhu Liguang, Sun Ligen, et al. Research progress of Nb microalloyed TWIP steel for automobile[J]. China Metallurgy, 2022, 33(3): 9-16. [3]陈亚军, 邝 霜, 赵征志. 先进高强度汽车用钢氢致延迟断裂研究进展[J]. 钢铁研究学报, 2020, 32(4): 265-272. Chen Yajun, Kuang Shuang, Zhao Zhengzhi. Study status of hydrogen induced delayed fracture of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020, 32(4): 265-272. [4]谷海容, 卢茜倩, 刘永刚, 等. 微合金元素Nb、V对热成形钢组织及氢脆敏感性影响[J]. 安徽工业大学学报(自然科学版), 2018, 35(4): 295-300. Gu Hairong, Lu Qianqian, Liu Yonggang, et al. Influence of microalloying elements Nb and V on microstructure and hydrogen embrittlement sensitivity of hot stamping steel[J]. Journal of Anhui University of Technology(Natural Science), 2018, 35(4): 295-300. [5]Zhao X L, Zhang Y J, Hui W J, et al. The potential significance of tempering treatment in alleviating the hydrogen embrittlement susceptibility of a hot-rolled and intercritically annealed medium-Mn steel[J]. Engineering Failure Analysis, 2021,119: 104969. [6]张海霞, 程晓英, 李 恒, 等. 回火温度对新型系泊链钢的组织与氢扩散行为的影响[J]. 材料热处理学报, 2015, 36(10): 141-147. Zhang Haixia, Cheng Xiaoying, Li Heng, et al. Effect of tempering temperature on microstructure and hydrogen diffusion behavior in new mooring chain steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 141-147. [7]王 贞, 刘 静, 黄 峰, 等. 回火温度对DP600钢氢扩散及氢脆敏感性的影响[J]. 金属热处理, 2021, 46(2): 87-94. Wang Zhen, Liu Jing, Huang Feng, et al. Effect of tempering temperature on hydrogen diffusion and hydrogen embrittlement susceptibility of DP600 steel[J]. Heat Treatment of Metals, 2021, 46(2): 87-94. [8]Li L, Song B, Yang B W, et al. Effect of tempering temperature after thermo-mechanical control process on microstructure characteristics and hydrogen-induced ductility loss in high-vanadium X80 pipeline steel[J]. Materials, 2020, 13(12): 2839. [9]Wang L, Cheng X Y, Peng H, et al. Effect of tempering temperature on hydrogen embrittlement in V-containing low alloy high strength steel[J]. Materials Letters, 2021, 302: 130327. [10]Zakroczymski T. Electrochemical determination of hydrogen in metals[J]. Journal of Electroanalytical Chemistry, 1999, 475(1): 82-88. [11]Dong C F, Li X G, Liu Z Y, et al. Hydrogen-induced cracking and healing behavior of X70 steel[J]. Journal of Alloys and Compounds, 2009, 484(1): 966-972. [12]Willianson G, Hall W. X-ray line broadening from filed aluminium and wolfram[J]. Acta Metallurgica, 1953, 1(1): 22-31. [13]Willianson G K, Smallman R E. Dislocation densities in some annealed and cold-working metals from measurements on the X-ray debye-scherrer spectrum[J]. Philosophical Magazine, 1956, 1(1): 34-46. [14]张海霞, 程晓英, 李 恒, 等. 回火温度对新型系泊链钢的组织和氢脆敏感性的影响[J]. 金属热处理, 2015, 40(11): 114-119. Zhang Haixia, Cheng Xiaoying, Li Heng, et al. Effect of tempering temperature on microstructure and hydrogen diffusion behavior in new mooring chain steel[J]. Heat Treatment of Metals, 2015, 40(11): 114-119. [15]Han Y D, Wang R Z, Wang H, et al. Hydrogen embrittlement sensitivity of X100 pipeline steel under different pre-strain[J]. International Journal of Hydrogen Energy, 2019, 39(44): 22380-22393. [16]Cheng X Y, Zhang H X. A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel[J]. Corrosion Science, 2020, 174: 108800. [17]Crank J. The Mathematics of Diffusion[M]. Oxford: Clarendon Press, 1995. [18]Jin X K, Xu L, Yu W C, et al. Effect of hydrogen on the very high cycle fatigue properties of quenched and tempered steels containing (Ti, Mo)C precipitates[J]. Rare Metal Materials and Engineering, 2021, 50(2): 458-468. [19]刘清华, 唐慧文, 斯庭智. 氢陷阱对钢氢脆敏感性的影响[J]. 材料保护, 2018, 51(11): 127-132. Liu Qinghua, Tang Huiwen, Si Tingzhi. Effects of hydrogen traps on the hydrogen embrittlement susceptibility of steel[J]. Materials Protection, 2018, 51(11): 127-132. |