金属热处理 ›› 2023, Vol. 48 ›› Issue (3): 215-220.DOI: 10.13251/j.issn.0254-6051.2023.03.035

• 组织与性能 • 上一篇    下一篇

Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金中α′相和α″相的组织演变与力学性能

岳旭1,3, 张明玉2, 同晓乐1, 乔恩利1, 张起1, 杨嘉珞1, 叶红川1,3   

  1. 1.新疆湘润新材料科技有限公司, 新疆 哈密 839000;
    2.大连交通大学 连续挤压教育部工程 研究中心, 辽宁 大连 116028;
    3.新疆钛基新材料重点实验室, 新疆 哈密 839000
  • 收稿日期:2022-10-08 修回日期:2023-01-04 出版日期:2023-03-25 发布日期:2023-04-25
  • 作者简介:岳旭(1985—),男,高级工程师,硕士,主要研究方向为钛合金塑性成形,E-mail:yuexu100@163.com。
  • 基金资助:
    新疆钛基新材料重点实验室(自治区创新环境(人才、基地)建设专项(XJQY2009)

Microstructure evolution of α′ and α″ phase and mechanical properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy

Yue Xu1,3, Zhang Mingyu2, Tong Xiaole1, Qiao Enli1, Zhang Qi1, Yang Jialuo1, Ye Hongchuan1,3   

  1. 1. Xinjiang Xiangrun New Materials Technology Co., Ltd., Hami Xinjiang 839000, China;
    2. Engineering Research Center of Continuous Extrusion, Dalian Jiaotong University, Dalian Liaoning 116028, China;
    3. Xinjiang Key Laboratory of Titanium-Based New Materials, Hami Xinjiang 839000, China
  • Received:2022-10-08 Revised:2023-01-04 Online:2023-03-25 Published:2023-04-25

摘要: 对Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行固溶时效处理,随后使用光学显微镜、扫描电镜、XRD衍射仪、拉伸试验以及冲击性能试验,分析固溶时效对合金中α′相和α″相的组织演变与力学性能的影响。结果表明,固溶处理后的微观组织中发生初生α相尺寸变小并趋于等轴化,尺寸较小的初生α相发生溶解并消失,其β转变组织变得不明显,经时效后的微观组织中析出大量αs相,β转变组织更加明显。经固溶处理后,组织均由α+α′+α″相构成,经时效处理后,组织由α相和β相构成。合金经固溶处理后,其抗拉强度为1336 MPa,屈服强度为1070 MPa,断后伸长率为6%,断面收缩率为22%,冲击吸收能量为16 J。经时效处理后,强度随时效温度升高而升高,塑性趋势与之相反,其冲击性能几乎没有变化。合金经固溶处理后的拉伸与冲击断口微观形貌均由韧窝构成,为典型的韧性断裂。经时效处理后,拉伸和冲击断口的微观形貌有明显的高低起伏,随着时效温度的升高,韧窝的尺寸和数量减少,并出现撕裂棱以及空洞,断裂类型有向脆性断裂转变的趋势,但仍以韧性断裂为主。

关键词: α′相和α″相, 组织演变, 力学性能, 断口形貌

Abstract: Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was subjected to solution and aging treatment. Effects of solution and aging on microstructure evolution of α′ phase and α′′ phase and mechanical properties of the alloy were analyzed by means of optical microscope, scanning electron microscope, XRD diffractometer, tensile test and impact property test. The results show that the size of primary α phase becomes smaller and tends to be equiaxed in the microstructure after solution treatment, and the smaller primary α phase dissolves and disappears, and the β transformation microstructure becomes insignificant. A large number of αs phases are precipitated in the microstructure after aging, and the β transformation microstructure is more obvious. After solution treatment, the microstructure consists of α+α′+α″ phase. After aging treatment, the microstructure consists of α phase and β phase. After solution treatment, the tensile strength of the alloy is 1336 MPa, the yield strength is 1070 MPa, the elongation is 6%, the section shrinkage is 22%, and the impact absorbed energy is 16 J. After aging treatment, the strength of the bar increases with the increase of aging temperature, and the plastic trend is opposite, the impact toughness is almost unchanged. The tensile and impact fracture morphologies of the alloy after solution treatment are composed of dimples, which is a typical ductile fracture. After aging treatment, the micromorphologies of the tensile and impact fracture have obvious ups and downs. With the increase of aging temperature, the size and number of dimples decrease, and tear edges and voids appear. The fracture type has a tendency to brittle fracture, but it is still dominated by ductile fracture.

Key words: α′ and α″ phases, organizational evolution, mechanical properties, fracture morphology

中图分类号: