[1]Hnninen H. Application and performance of high nitrogen steels[C]// 7th International Conference on High Nitrogen Steels, 2004. [2]李昭昆, 罗志强, 李建新, 等. 高氮马氏体不锈轴承钢的组织与性能[J]. 金属热处理, 2018, 43(5): 15-21. Li Zhaokun, Luo Zhiqiang, Li Jianxin, et al. Microstructure and mechanical properties of high nitrogen martensite stainless bearing steel[J]. Heat Treatment of Metals, 2018, 43(5): 15-21. [3]俞 峰, 魏果能, 许 达. 不锈轴承材料的研究和发展[J]. 钢铁研究学报, 2005, 17(1): 6-9. Yu Feng, Wei Guoneng, Xu Da. Research and development of stainless bearing material[J]. Journal of Iron and Steel Research, 2005, 17(1): 6-9. [4]胡正飞, 吴细毛, 张 斌, 等. 长期服役的12%Cr马氏体耐热钢中的碳化物及其变化[J]. 动力工程学报, 2010, 30(4): 269-274. Hu Zhengfeng, Wu Ximao, Zhang Bin, et al. Evolution of carbides in 12%Cr heat-resistant steels after long-term services[J]. Journal of Chinese Society of Power Engineering, 2010, 30(4): 269-274. [5]Fang W, Zhang C, Gou F, et al. The effect of microalloying elements (vanadium, titanium) additions on the austenite grain growth behavior in medium carbon steel containing nitrogen[J]. Materials Science and Engineering Technology, 2020, 51(2): 230-237. [6]Wang M J, Wang Y, Sun F. Tempering behavior of a semi-high speed steel containing nitrogen[J]. Materials Science and Engineering A, 2006, 438: 1139-1142. [7]夏书文, 左鹏鹏, 张永强, 等. 热锻模具开裂失效分析[J]. 金属热处理, 2018, 43(12): 232-237. Xia Shuwen, Zuo Pengpeng, Zhang Yongqiang, et al. Cracking failure analysis of hot forging die[J]. Heat Treatment of Metals, 2018, 43(12): 232-237. [8]尹桂全, 黄贞益, 杨才福, 等. 氮含量和TMCP对微合金V-N钢显微组织和力学性能的影响[J]. 金属热处理, 2008, 33(3): 4-8. Yin Guiquan, Huang Zhenyi, Yang Caifu, et al. Effects of nitrogen content and TMCP on microstructure and mechanical properties of V-N micro-alloying steels[J]. Heat Treatment of Metals, 2008, 33(3): 4-8. [9]Guo H, Du S, Lei J, et al. Influence of twin carbide structure on friction and wear properties of G95Cr18 stainless bearing steel[J]. Frontiers in Materials, 2019, 6: 162. |