[1]王东梅, 赵磊城, 陈 林, 等. 过共析钢轨钢的连续冷却转变行为[J]. 金属热处理, 2021, 46(2): 45-49. Wang Dongmei, Zhao Leicheng, Chen Lin, et al. Continuous cooling transformation behavior of hypereutectoid rail steel[J]. Heat Treatment of Metals, 2021, 46(2): 45-49. [2]孙 岩, 赵 楠, 薛 峰, 等. 960 MPa级高强钢的连续冷却转变[J]. 金属热处理, 2021, 46(3): 166-169. Sun Yan, Zhao Nan, Xue Feng, et al. Continuous cooling transformation of 960 MPa grade high strength steel[J]. Heat Treatment of Metals, 2021, 46(3): 166-169. [3]江 畅, 王子波, 王 杨, 等. 冷作硬化非调质钢的连续冷却相变规律[J]. 钢铁, 2022, 57(3): 91-96. Jiang Chang, Wang Zibo, Wang Yang, et al. Continuous cooling transformation law of cold work hardening non-quenched and tempered steel[J]. Iron and Steel, 2022, 57(3): 91-96. [4]董 瀚, 廉心桐, 胡春东, 等. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582. Dong Han, Lian Xintong, Hu Chundong, et al. High performance steels: The scenario of theory and technology[J]. Acta Metallurgica Sinica, 2020, 56(4): 558-582. [5]吴民渊, 赵晓敏, 董 捷, 等. 免退火冷镦钢SWRCH35KM的相变行为及组织演变[J]. 金属热处理, 2017, 42(4): 68-71. Wu Minyuan, Zhao Xiaomin, Dong Jie, et al. Transformation behavior and microstructure evolution of non-annealed cold heading steel wire rod SWRCH35KM[J]. Heat Treatment of Metals, 2017, 42(4): 68-71. [6]涛 雅, 周乐育, 董 捷, 等. 工艺参数对SWRCH35KM组织与力学性能的影响[J]. 钢铁研究学报, 2018, 30(7): 581-584. Tao Ya, Zhou Leyu, Dong Jie, et al. Effect of process parameters on microstructure and mechanical properties of non-annealed cold heading steel SWRCH35KM[J]. Journal of Iron and Steel Research, 2018, 30(7): 581-584. [7]姜 婷, 汪开忠, 于同仁, 等. 免退火冷镦钢10B21热轧盘条的研制[J]. 轧钢, 2020, 37(6): 53-56. Jiang Ting, Wang Kaizhong, Yu Tongren, et al. Development of non-annealing cold heading steel 10B21 hot rolled wire rod[J]. Steel Rolling, 2020, 37(6): 53-56. [8]孙浩然. 汽车紧固件用钢的发展动向[J]. 中国冶金, 2011, 21(7): 7-9. Sun Haoran. Review on the fastener steels for automobiles[J]. China Metallurgy, 2011, 21(7): 7-9. [9]Tian P, Zhong Z Y, Hui W J, et al. Effect of different strain on microstructure evolution of medium carbon steel[J]. Advanced Materials Research, 2013, 652: 923-928. [10]Xu Z, Ding Z, Liang B, et al. The analysis for morphological evolution and crystallography of degenerate pearlite in 100Mn13 steel[J]. Materialwissenschaft und Werkstofftechnik, 2020, 51(9): 1251-1257. [11]Xu P, Liang Y, Li J, et al. Further improvement in ductility induced by the refined hierarchical structures of pearlite[J]. Materials Science and Engineering, 2019, 745: 176-184. [12]Iza-Mendia A, Gutierrez I. Generalization of the existing relations between microstructure and yield stress from ferrite-pearlite to high strength steels[J]. Materials Science and Engineering A, 2013, 561: 40-51. [13]张 寒, 白秉哲. Mn-Si-Cr系中碳钢在过冷奥氏体状态下变形时的显微组织演变[J]. 金属学报, 2010, 46(1): 47-51. Zhang Han, Bai Bingzhe. Microstructural evolution of Mn-Si-Cr medium carbon steel deformed under undercooled austenite state[J]. Acta Metallurgica Sinica, 2010, 46(1): 47-51. [14]Dey I, Saha R, Ghosh S K. Influence of microalloying in high carbon pearlitic steel[J]. Materials Today: Proceedings, 2019, 18: 4835-4839. [15]Yasuda T, Nakada N. Effect of carbon concentration in austenite on cementite morphology in pearlite: Transformations and microstructures[J]. ISIJ International, 2021, 61(1): 372-379. [16]王 斌, 刘振宇, 冯 洁, 等. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用[J]. 金属学报, 2014, 50(6): 652-658. Wang Bin, Liu Zhenyu, Feng Jie, et al. Precipitation behavior and precipitation strengthening of nanoscale cementite in carbon steels during ultra fast cooling[J]. Acta Metallurgica Sinica, 2014, 50(6): 652-658. [17]Jia T, Feng J, Wang B, et al. Investigation on microstructure and properties of 0.17% carbon steel with dispersed cementite particle[J]. Journal of Materials Processing Technology, 2015, 225: 318-325. [18]孟 灿, 徐平伟, 李 静, 等. 深过冷条件下珠光体特征尺寸及断裂行为分析[J]. 钢铁研究学报, 2021, 33(1): 75-83. Meng Can, Xu Pingwei, Li Jing, et al. Analysis of characteristic dimension and fracture behavior of pearlitic steel under deep undercooling conditions[J]. Journal of Iron and Steel Research, 2021, 33(1): 75-83. [19]Shanmugam S, Ramisetti N K, Misra R D K, et al. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels[J]. Materials Science and Engineering A, 2007, 460: 335-343. [20]Hsu H C, Lin Y C, Wang Shing-Hoa, et al. Corrigendum to “Inducement of bainite and carbide transformation from retained austenite based on a high strain rate” [Scr. Mater. 62 (2010) 372-375][J]. Scripta Materialia, 2010, 62(9): 726. |