[1]Cai M H, Huang H S, Su J H, et al. Enhanced tensile properties of a reversion annealed 6.5 Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction[J]. Journal of Materials Science and Technology, 2018, 34(8): 1428-1435. [2]武永丽, 熊 毅, 岳 赟, 等. 通道角挤压温度对粒状珠光体钢组织和性能的影响[J]. 材料热处理学报, 2021, 42(1): 97-103. Wu Yongli, Xiong Yi, Yue Yun, et al. Effect of channel angle extrusion temperature on microstructure and properties of granular pearlite steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(1): 97-103. [3]赖春明, 张麦秋. 累积叠轧技术的基本原理及其在金属层状复合板材制备中的应用[J]. 科技创新导报, 2018, 15(31): 69-70. Lai Chunming, Zhang Maiqiu. The basic principle of cumulative rolling technology and its application in the preparation of metal laminated composite sheet[J]. Science and Technology Innovation Herald, 2018, 15(31): 69-70. [4]Zhao L J, Park N, Tian Y, et al. Dynamic transformation mechanism for producing ultrafine grained steels[J]. Advanced Engineering Materials, 2018, 20(7): 1701016. [5]Hu X Y, Zhao H L, Ni S, et al. Grain refinement and phase transition of commercial pure zirconium processed by cold rolling[J]. Materials Characterization, 2017, 129: 149-155. [6]Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel[J]. Acta Materialia, 2011, 59(10): 4002-4014. [7]Tsuji N, Maki T. Enhanced structural refinement by combining phase transformation and plastic deformation in steels[J]. Scripta Materialia, 2009, 60(12): 1044-1049. [8]Pathak M K, Joshi A, Mer K K S, et al. Mechanical properties and microstructural evolution of bulk UFG Al 2014 alloy processed through cryorolling and warm rolling[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856. [9]Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process[J]. Acta Materialia, 2019, 174: 131-141. [10]Yao S J, Du L X, Liu X H, et al. A new attempt to obtain bulk nanocrystalline steel[J]. Journal of Materials Sciences and Technology, 2009, 25(1): 81-84. [11]Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel[J]. Materials Characterization, 2016, 112: 180-187. [12]Yang F, Luo H W, Hu C D, et al. Effects ofintercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel[J]. Materials Science and Engineering A, 2017, 685: 115-122. [13]Lee S, De Cooman B C. Effect of theintercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel[J]. Metallurgical and Materials Transactions A, 2014, 45(11): 5009-5016. [14]Yao S J, Du L X, Liu X H, et al. Influencing factors for obtaining ultrafine austenite grains with initial microstructure of warm-rolled ferrite/pearlite[J]. Acta Metallurgica Sinica (English Letters), 2008, 21: 391-398. [15]Sun J J, Jiang T, Wang Y J, et al. Effect of grain refinement on high-carbon martensite transformation and its mechanical properties[J]. Materials Science and Engineering A, 2018, 726: 342-349. [16]Song Y Y, Li X Y, Rong L J, et al. Formation of the reversed austenite during intercritical tempering in a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J]. Materials Letters, 2010, 64(13): 1411-1414. [17]Hu B, Luo H W. A novel two-stepinter critical annealing process to improve mechanical properties of medium Mn steel[J]. Acta Materialia, 2019, 176: 250-263. [18]Yang G W, Li Z D, Sun X J, et al. Ultrafine grained austenite in a low carbon vanadium microalloyed steel[J]. Journal of Iron and Steel Research International, 2013, 20(4): 64-69. [19]Shen X J, Tang S, Chen J, et al. The effect of warm deforming and reversal austenization on the microstructure and mechanical properties of a microalloyed steel[J]. Materials Science and Engineering A, 2016, 671: 182-189. [20]Trzaska J, Dobrzański L A. Modelling of CCT diagrams for engineering and constructional steels[J]. Journal of Materials Processing Technology, 2007, 192(9): 504-510. [21]Jr A C, Nguyen-Minh T, Rupanjit G, et al. Flow softening-based formation of Widmanstatten ferrite in a 0. 06%C steel deformed above the Ae(3)[J]. ISIJ International, 2015, 55(1): 300-307. [22]Jonas J J, Ghosh C. Role of mechanical activation in the dynamic transformation of austenite[J]. Acta Materialia, 2013, 61(16): 6125-6131. [23]Jr C A, Foul A, Guo B Q, et al. Determination of the critical stress for the initiation of dynamic transformation in commercially pure titanium[J]. Scripta Materialia, 2017, 133: 83-85. |