[1]洪术华, 宋 雍, 叶景波, 等. 海洋工程发展现状与跨越发展战略 [J]. 船舶工程, 2019, 41(S2): 264-268. Hong Shuhua, Song Yong, Ye Jingbo, et al. The current situation of marine engineering development and the strategy of leapfrog development [J]. Ship Engineering, 2019, 41(S2): 264-268. [2]Wang L, Cheng X, Peng H, et al. Effect of tempering temperature on hydrogen embrittlement in V-containing low alloy high strength steel [J]. Materials Letters, 2021, 302: 130327. [3]管 真, 孙永庆, 李 莉, 等. 15-5PH不锈钢的氢脆敏感性[J].金属热处理, 2019, 44(12): 226-232. Guan Zhen, Sun Yongqing, Li Li, et al. Hydrogen embrittlement sensitivity of 15-5PH stainless steel[J]. Heat Treatment of Metals, 2019,44(12): 226-232. [4]王海波, 徐震霖, 胡学文, 等. 热轧超高强度复相钢的氢脆敏感性[J]. 金属热处理, 2021, 46(8): 51-56. Wang Haibo, Xu Zhenlin, Hu Xuewen, et al. Hydrogen embrittlement susceptibility of a hot-rolled ultra-high strength complex phase steel[J]. Heat Treatment of Metals, 2021, 46(8): 51-56. [5]Yoo J, Jo M C, Jo M C, et al. Effects of Ti alloying on resistance to hydrogen embrittlement in (Nb+Mo)-alloyed ultra-high-strength hot-stamping steels [J]. Materials Science and Engineering A, 2020, 791: 139763. [6]Zhang S, Liu S, Wan J, et al. Effect of Nb-Ti multi-microalloying on the hydrogen trapping efficiency and hydrogen embrittlement susceptibility of hot-stamped boron steel [J]. Materials Science and Engineering A, 2020, 772: 138788. [7]Mine Y, Horita N, Horita Z, et al. Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15415-15425. [8]Fan Y, Zhang B, Wang J, et al. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel [J]. Journal of Materials Science and Technology, 2019, 35(10): 2213-2219. [9]Park I J, Lee S M, Jeon H H, et al. The advantage of grain refinement in the hydrogen embrittlement of Fe-18Mn-0.6C twinning-induced plasticity steel [J]. Corrosion Science, 2015, 93: 63-69. [10]Zhang S, Huang Y, Sun B, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels [J]. Materials Science and Engineering A, 2015, 626: 136-143. [11]Zhang S, Fan E, Wan J, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel [J]. Corrosion Science, 2018, 139: 83-96. [12]刘 纲, 干 勇, 刘 崇, 等. 基于22MnB5钢的铌钒微合金化热成形钢的研发 [J]. 金属热处理, 2021, 46(1): 109-113. Liu Gang, Gan Yong, Liu Chong, te al. Delvelopment of Nb-V microalloyed hot forming steel based on 22MnB5 [J]. Heat Treatment of Metals, 2021, 46(1): 109-113. [13]王 贞, 刘 静, 黄 峰, 等. 回火温度对DP600钢氢扩散及氢脆敏感性的影响[J].金属热处理, 2021, 46(2): 87-94. Wang Zhen, Liu Jing, HuangFeng, et al. Effect of tempering temperature on hydrogen diffusion and hydrogen embrittlement susceptibility of DP600 steel[J]. Heat Treatment of Metals, 2021,46(2): 87-94. [14]Cheng X, Zhang H, Li H, et al. Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel [J]. Materials Science and Engineering A, 2015, 636: 164-171. [15]Devanathan M, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 270(1340): 90-102. [16]伏思宇, 杜 预, 黄志远, 等. 微观组织对GCr15轴承钢氢扩散行为的影响 [J]. 金属热处理, 2022, 47(12): 175-180. Fu Siyu, Du Yu, Huang Zhiyuan, et al. Effect of microstructure on hydrogen diffusion behavior of GCr15 bearing steel [J]. Heat Treatment of Metals, 2022, 47(12): 175-180. [17]褚武扬, 乔利杰. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013. [18]Cheng X, Cheng X, Jiang C, et al. Hydrogen diffusion and trapping in V-microalloyed mooring chain steels [J]. Materials Letters, 2018, 213: 118-121. [19]Williamson G, Hall W. X-ray line broadening from filed aluminium and wolfram [J]. Acta Metallurgica, 1953, 1(1): 22-31. [20]Langford J I, Wilson A. Scherrer after sixty years: A survey and some new results in the determination of crystallite size [J]. Journal of Applied Crystallography, 1978, 11(2): 102-113. [21]Peral L, Zafra A, Fernández-Pariente I, et al. Effect of internal hydrogen on the tensile properties of different CrMo (V) steel grades: Influence of vanadium addition on hydrogen trapping and diffusion [J]. International Journal of Hydrogen Energy, 2020, 45(41): 22054-22079. [22]Duprez L, Verbeken K, Verhaege M. Effect of hydrogen on the mechanical properties of multiphase high strength steels [J]. Effect of Hydrogen on Materials, 2009: 62-69. [23]Haq A J, Muzaka K, Dunne D, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J]. International Journal of Hydrogen Energy, 2013, 38(5): 2544-2556. [24]Frappart S, Feaugas X, Creus J, et al. Study of the hydrogen diffusion and segregation into Fe-C-Mo martensitic HSLA steel using electrochemical permeation test [J]. Journal of Physics and Chemistry of Solids, 2010, 71(10): 1467-1479. [25]Cheng X, Zhang H. A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel [J]. Corrosion Science, 2020, 174: 108800. [26]Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metallurgica, 1970, 18(1): 147-157. [27]Hirth J P. Effects of hydrogen on the properties of iron and steel [J]. Metallurgical Transactions A, 1980, 11(6): 861-890. [28]Araújo D, Vilar E, Carrasco J P. A critical review of mathematical models used to determine the density of hydrogen trapping sites in steels and alloys [J]. International Journal of Hydrogen Energy, 2014, 39(23): 12194-12200. [29]Schaffner T, Hartmaier A, Kokotin V, et al. Analysis of hydrogen diffusion and trapping in ultra-high strength steel grades [J]. Journal of Alloys and Compounds, 2018, 746: 557-566. [30]Frappart S, Oudriss A, Feaugas X, et al. Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy [J]. Scripta Materialia, 2011, 65(10): 859-862. |