[1]殷 剑, 金 康, 黎 诚. 时效处理对7022铝合金组织与性能的影响[J]. 材料热处理学报, 2022, 43(2): 49-57. Yin Jian, Jin Kang, Li Cheng. Effect of aging treatment on microstructure and properties of 7022 aluminum alloy [J]. Transactions of Materials and Heat Treatment, 2022, 43(2): 49-57. [2]曾 舟, 黄 琼, 苗景国, 等. 固溶处理制度对7050铝合金组织与性能的影响[J]. 现代制造技术与装备, 2021, 57(10): 109-111. Zeng Zhou, Huang Qiong, Miao Jingguo, et al. Effect of solution treatment on microstructure and properties of 7050 aluminum alloy [J]. Modern Manufacturing Technology and Equipment, 2021, 57(10): 109-111. [3]黄青梅, 程全士, 叶凌英, 等. 强化固溶对紧固件用Al-Zn-Mg-Cu合金组织与性能的影响[J]. 中国有色金属学报, 2021, 31(9): 2390-2402. Huang Qingmei, Cheng Quanshi, Ye Lingying, et al. Effects of enhanced solid solution on microstructure and properties of Al-Zn-Mg-Cu alloys used in fasteners [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(9): 2390-2402. [4]姜中涛, 汪 鑫, 周志明, 等. 双级固溶工艺对7050铝合金组织与力学性能的影响[J]. 金属热处理, 2022, 47(3): 102-106. Jiang Zhongtao, Wang Xin, Zhou Zhiming, et al. Effect of two-step solution process on microstructure and mechanical properties of 7050 aluminum alloy [J]. Heat Treatment of Metals, 2022, 47(3): 102-106. [5]陈砚池, 吴 量, 邓亚琪, 等. 铸造成型原位自生TiB2/Al-Mg-Li复合材料热处理过程中的微观组织与力学性能演变[J]. 中国材料进展, 2019, 38(3): 308-312. Chen Yanchi, Wu Liang, Deng Yaqi, et al. Microstructure evolution during heat treatment of a cast in-situ TiB2/Al-Mg-Li composite [J]. Materials China, 2019, 38(3): 308-312. [6]但承益, 吴 一, 陈 东, 等. 热处理对搅拌摩擦原位TiB2/7075复合材料组织和性能的影响[J]. 金属热处理, 2015, 40(8): 96-100. Dan Chengyi, Wu Yi, Chen Dong, et al. Effects of heat treatment after friction stir processing on properties of in-situ TiB2/7075 composite [J]. Heat Treatment of Metals, 2015, 40(8): 96-100. [7]Wang H, Zhang H M, Cui Z S, et al. Compressiveresponse and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(5): 1235-1248. [8]Chen Z, Sun G A, Wu Y, et al. Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites [J]. Materials and Design, 2016, 116: 577-590. [9]刘政材, 贾义旺, 朱 涛, 等. 混合盐法TiB2颗粒增强铝基复合材料研究现状[J]. 热加工工艺, 2021, 50(12): 17-21. Liu Zhengcai, Jia Yiwang, Zhu Tao, et al. Reseach progress of TiB2 particle reinforced aluminum matrix composites by salt-metal reaction method [J]. Hot Working Technology, 2021, 50(12): 17-21. [10]杨 清, 陈 哲, 李险峰, 等. 原位自生TiB2/Al基复合材料的制备及性能[J]. 宇航材料工艺, 2021, 51(4): 48-62. Yang Qing, Chen Zhe, Li Xianfeng, et al. The fabrication and performance of the in-situ TiB2/Al composites [J]. Aerospace Materials and Technology, 2021, 51(4): 48-62. [11]王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443. Wang Haowei, Zhao Dechao, Wang Mingliang. A review of the corrosion protection technology on in situ TiB2/Al composites [J]. Acta Metallurgica Sinica, 2022, 58(4): 428-443. [12]Liu J, Chen Z, Zhang F, et al. Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process [J]. Materials Research Letters, 2018, 6(8): 406-412. [13]Zhu H, Liu J, Wu Y, et al. Hot deformation behavior and workability of in-situ TiB2/7050Al composites fabricated by powder metallurgy [J]. Materials, 2020, 13(23): 5319. [14]Ju X F, Zhang F G, Chen Z, et al. Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment [J]. Metals-Open Access Metallurgy Journal, 2017, 7(12): 00530. [15]Song Y, Baker T N. Accelerated aging processes in ceramic reinforced AA6061 composites [J]. Metal Science Journal, 1994, 10(5): 406-413. [16]李京京, 李晨光, 梁加淼, 等. TiB2含量对TiB2/Al-3.8Zn-1.85Mg-1.32Cu复合材料微观组织与力学性能的影响[J]. 中国有色金属学报, 2020, 30(6): 1221-1229. Li Jingjing, Li Chenguang, Liang Jiamiao, et al. Influence of TiB2 particles content on microstructure and mechanical properties of TiB2/Al-3.8Zn-1.85Mg-1.32Cu composites [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1221-1229. [17]王海靖, 李 贺, 柴丽华, 等. 增强颗粒对TiB2/Al-Zn-Mg-Cu复合材料均匀化过程的影响[J]. 金属热处理, 2018, 43(12): 71-77. Wang Haijing, Li He, Chai Lihua, et al. Effect of TiB2 reinforcement on homogenization process of TiB2/Al-Zn-Mg-Cu composites [J]. Heat Treatment of Metals, 2018, 43(12): 71-77. [18]洪天然. 原位自生TiB2/2009复合材料固溶时效行为研究[D]. 上海: 上海交通大学, 2016. Hong Tianran. Study on solution and ageing behaviors of in-situ TiB2/2009 composites [D]. Shanghai: Shanghai Jiao Tong University, 2016. [19]申艳微. 原位自生TiB2/Al-Cu-Li-x复合材料热处理行为的研究[D]. 上海: 上海交通大学, 2017. Shen Yanwei. Heattreatment of in-situ TiB2/Al-Cu-Li-x composite [D]. Shanghai: Shanghai Jiao Tong University, 2017. [20]Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part I. Characterisation of constituent particles and overheating [J]. Materials Science and Engineering A, 2012, 534: 234-243. [21]仝洪伟. 形变热处理工艺对AA7085铝合金组织和性能的影响[D]. 重庆: 重庆大学, 2015. Tong Hongwei. Effect of thermo-mechanical treatment on themicrostructure and properties of AA7085 aluminum alloy [D]. Chongqing: Chongqing University, 2015. [22]吴道祥, 林 林, 陈焕良, 等. 固溶温度对7050铝合金组织及性能的影响[J]. 铝加工, 2018(2): 27-34. Wu Daoxiang, Lin Lin, Chen Huanliang, et al. Effect of solution temperature on microstructures and mechanical properties of aluminum alloy 7050 [J]. Aluminum Fabrication, 2018(2): 27-34. [23]徐戊矫, 龚利华, 王玉松, 等. 强化固溶对7050铝合金组织与性能的影响[J]. 金属热处理, 2015, 40(4): 57-61. Xu Wujiao, Gong Lihua, Wang Yusong, et al. Effect of strengthening-solid-solution on microstructure and properties of 7050 aluminum alloy [J]. Heat Treatment of Metals, 2015, 40(4): 57-61. [24]张洪静, 黄晓冬, 孙有政, 等. 固溶温度对7050铝合金锻板组织和性能的影响[J]. 材料热处理学报, 2020, 41(11): 46-52. Zhang Hongjing, Huang Xiaodong, Sun Youzheng, et al. Effect of solid solution temperature on microstructure and properties of 7050 aluminum alloy forging plate [J]. Transactions of Materials and Heat Treatment, 2020, 41(11): 46-52. [25]张新明, 欧 军, 刘胜胆, 等. 固溶制度对1933铝合金自由锻件组织和力学性能的影响[J]. 中国有色金属学报, 2010, 20(1): 30-36. Zhang Xinming, Ou Jun, Liu Shengdan, et al. Effects of solution treatment on microstructure and mechanical properties of 1933 aluminum alloy forgings [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 30-36. [26]Peng G, Chen K, Chen S, et al. Evolution of the second phase particles during the heating-up process of solution treatment of Al-Zn-Mg-Cu alloy [J]. Materials Science and Engineering A, 2015, 641: 237-241. [27]李 亚, 邓运来, 张 劲, 等. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122. Li Ya, Deng Yunlai, Zhang Jin, et al. Dissolution behavior of second phases in 7050 aluminum alloy [J]. Journal of Materials Engineering, 2020, 48(4): 116-122. [28]He L, Wang X, Chai L, et al. Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-Mg-Cu-Zr composite fabricated by Melt-SHS process [J]. Materials Science and Engineering A, 2018, 720: 60-68. [29]李永飞, 朱志华, 徐 佐, 等. 增强体含量对TiB2/A356铝基复合材料组织与性能的影响[J]. 特种铸造及有色合金, 2021, 41(6): 699-703. Li Yongfei, Zhu Zhihua, Xu Zuo, et al. Effect of reinforcement content on microstructure and mechanical properties of TiB2/A356 composites [J]. Special Casting and Nonferrous Alloys, 2021, 41(6): 699-703. [30]Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part II. Microstructure and mechanical properties [J]. Materials Science and Engineering A, 2012, 534: 244-252. |