[1]刘 兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715. Liu Bing, Peng Chaoqun, Wang Richu, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715. [2]Zheng Y L, Li C B, Liu S D, et al. Effect of homogenization time on quench sensitivity of 7085 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2275-2281. [3]Li P Y, Xiong B Q, Zhang Y A, et al. Quench sensitivity and microstructure character of high strength AA7050[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 268-274. [4]彭英浩, 刘崇宇, 徐峥峥, 等. 高锌Al-Zn-Mg-Cu合金淬火敏感性研究[J]. 特种铸造及有色合金, 2020, 40(3): 331-335. Peng Yinghao, Liu Chongyu, Xu Zhengzheng, et al. Quenching sensitivity of high zinc-containing Al-Zn-Mg-Cu alloy[J]. Special Casting and Nonferrous Alloys, 2020, 40(3): 331-335. [5]Ma Z M, Zhang Y, Liu S D, et al. Quenching sensitivity and heterogeneous precipitation behavior of AA7136 alloy[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3356-3369. [6]高 妍, 陈文琳, 王 梁, 等. 稀土对7085铝合金锻件组织和腐蚀性能的影响[J]. 塑性工程学报, 2016, 23(3): 145-151. Gao Yan, Chen Wenlin, Wang Liang, et al. Effect of rare earth metals on microstructure and corrosion properties of 7085 aluminum alloy[J]. Journal of Plasticity Engineering, 2016, 23(3): 145-151. [7]Zhang Z H, Xiong B Q, Liu S F, et al. Changes of microstructure of different quench sensitivity 7, 000 aluminum alloy after end quenching[J]. Rare Metals, 2014, 33(3): 270-275. [8]Nie B H, Liu P Y, Zhou T T. Effect of compositions on the quenching sensitivity of 7050 and 7085 alloys[J]. Materials Science and Engineering A, 2016, 667: 106-114. [9]Peng Y H, Liu C Y, Wei L L, et al. Quench sensitivity and microstructures of high-Zn-content Al-Zn-Mg-Cu alloys with different Cu contents and Sc addition[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(1): 24-35. [10]祁小红, 邓运来, 刘胜胆, 等. 微量Sc对7085铝合金淬火敏感性的影响[J]. 中国有色金属学报, 2013, 23(3): 666-672. Qi Xiaohong, Deng Yunlai, Liu Shengdan, et al. Effect of minor Sc on quench sensitivity of 7085 aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 666-672. [11]王凯先, 尹登峰, 胡 婷, 等. 微量钪、锆对Al-Zn-Mg合金铸态组织演变的影响[J]. 金属热处理, 2019, 44(3): 50-57. Wang Kaixian, Yin Dengfeng, Hu Ting, et al. Influence of minor Sc and Zr on as-cast microstructure evolution of Al-Zn-Mg alloy[J]. Heat Treatment of Metals, 2019, 44(3): 50-57. [12]田少鲲, 李静媛, 张俊龙, 等. Sc对7056铝合金组织和性能的影响[J]. 工程科学学报, 2019, 41(10): 1298-1306. Tian Shaokun, Li Jingyuan, Zhang Junlong, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy[J]. Chinese Journal of Engineering, 2019, 41(10): 1298-1306. [13]李召明, 姜海昌, 王昀立, 等. 含钪7N01铝合金中Al3(Sc, Zr, Ti)相的析出及其作用机制[J]. 中国材料进展, 2019, 38(8): 787-792. Li Zhaoming, Jiang Haichang, Wang Yunli, et al. The precipitation and functional mechanism of Al3(Sc, Zr, Ti) phase in 7N01 aluminum alloy with Sc addition[J]. Materials China, 2019, 38(8): 787-792. [14]Xiao Q F, Huang J W, Jiang Y G, et al. Effects of minor Sc and Zr additions onmechanical properties and microstructure evolution of Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1429-1438. [15]Liu L, Jia Y Y, Jiang J T, et al. The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys[J]. Journal of Alloys and Compounds, 2019, 799: 1-14. [16]戴晓元, 夏长清, 马 科, 等. Sc对Al-Zn-Mg-Cu-Zr合金铸态组织和力学性能的影响[J]. 中国有色金属学报, 2007, 17(8): 1324-1329. Dai Xiaoyuan, Xia Changqing, Ma Ke, et al. Effect of Sc on as-cast microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr alloys[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(8): 1324-1329. [17]Rokhlin L L, Dobatkina T V, Bochvar N R, et al. Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc system[J]. Journal of Alloys and Compounds, 2004, 367(1): 10-16. [18]张 训, 高智勇, 叶 茂, 等. 7055超高强铝合金的时效工艺[J]. 金属热处理, 2015, 40(10): 181-186. Zhang Xun, Gao Zhiyong, Ye Mao, et al. Aging process of 7055 ultra high strength aluminum alloy[J]. Heat Treatment of Metals, 2015, 40(10): 181-186. [19]何克准, 李 群, 刘胜胆, 等. 预拉伸对高强Al-Zn-Mg-Cu-Zr合金板材淬火敏感性效应的影响[J]. 中南大学学报(英文版), 2021, 28(9): 2660-2669. He Kezhun, Li Qun, Liu Shengdan, et al. Influence of pre-stretching on quench sensitive effect of high-strength Al-Zn-Mg-Cu-Zr alloy sheet[J]. Journal of Central South University, 2021, 28(9): 2660-2669. [20]肖济金, 刘崇宇, 石 磊, 等. 时效前冷变形对Al-15Zn-0.5Mg-0.5Sc合金组织及力学性能的影响[J]. 金属热处理, 2022, 47(10): 179-184. Xiao Jijin, Liu Chongyu, Shi Lei, et al. Effect of cold deformation before aging on microstructure and mechanical properties of Al-15Zn-0.5Mg-0.5Sc alloy[J]. Heat Treatment of Metals, 2022, 47(10): 179-184. [21]张 勇, 邓运来, 张新明, 等. 7050铝合金热轧板的淬火敏感性[J]. 中国有色金属学报, 2008(10): 1788-1794. Zhang Yong, Deng Yunlai, Zhang Xinming, et al. Quenching sensitivity of 7050 aluminium alloy hot-rolled plate[J]. The Chinese Journal of Nonferrous Metals, 2008(10): 1788-1794. [22]戴晓元, 夏长清, 彭小敏. 7×××铝合金退火过程中二次Al3(Sc, Zr)粒子的析出行为[J]. 中国有色金属学报, 2010, 20(3): 451-455. Dai Xiaoyuan, Xia Changqing, Peng Xiaomin. Precipitation behavior of Al3(Sc, Zr) secondary particles in 7××× aluminum alloys during annealing[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 451-455. [23]郑山红, 郭巧能, 刘志勇, 等. 双级蠕变时效对含钪7050铝合金力学及耐腐蚀性能的影响[J]. 金属热处理, 2020, 45(1): 193-199. Zheng Shanhong, Guo Qiaoneng, Liu Zhiyong, et al. Effect of two-stage creep-aging on mechanical properties and corrosion resistance of 7050 aluminum alloy containing Sc[J]. Heat Treatment of Metals, 2020, 45(1): 193-199. [24]李鹏贺, 王明星, 郭巧能, 等. Sc对7050铝合金耐腐蚀性能的影响[J]. 轻合金加工技术, 2017, 45(7): 55-61. Li Penghe, Wang Mingxing, Guo Qiaoneng, et al. Effect of Sc on the corrosion resistance of 7085 aluminum alloy[J]. Light Alloy Fabrication Technology, 2017, 45(7): 55-61. [25]池海涛, 刘馥兵, 胡晓光. 7A41铝合金的力学性能和耐蚀性能[J]. 金属热处理, 2022, 47(8): 88-94. Chi Haitao, Liu Fubing, Hu Xiaoguang, et al. Mechanical properties and corrosion resistance of 7A41 aluminium alloy[J]. Heat Treatment of Metals, 2022, 47(8): 88-94. [26]Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behaviour of an Al-Zn-Mg alloy[J]. Corrosion Science, 2012, 65: 288-298. |