[1]尹子明, 李加旺, 曹 超, 等. 发动机正时链条磨损性能研究[J]. 机械传动, 2020, 44(6): 172-176. Yin Ziming, Li Jiawang, Cao Chao, et al. Research on timing chain wear performance of the engine[J]. Journal of Mechanical Transmission, 2020, 44(6): 172-176. [2]孟繁忠, 程亚兵, 董成国, 等. 汽车发动机链条的微动磨损现象研究[J]. 润滑与密封, 2006(10): 36-38. Meng Fanzhong, Cheng Yabing, Dong Chengguo, et al. Study on fretting wear phenomenon of automotive engine chain[J]. Lubrication Engineering, 2006(10): 36-38. [3]刘安琴. 船舶链条机械磨损寿命预测技术[J]. 舰船科学技术, 2018, 40(22): 28-30. Liu Anqin. Research on prediction technology for mechanical wear life of ship chain[J]. Ship Science and Technology, 2018, 40(22): 28-30. [4]Martinovs A, Polukoshko S, Zaicevs E, et al. Laser hardening process optimization using FEM[C]//19th International Scientific Conference Engineering for Rural Development. 2020: 1500-1508. [5]Muthukumaran G, Babu P D. Laser transformation hardening of various steel grades using different laser types[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(2): 1-29. [6]Zhao Jiyong, Miao Hongchen, Kan Qianhua, et al. Numerical investigation on the rolling contact wear and fatigue of laser dispersed quenched U71Mn rail[J]. International Journal of Fatigue, 2021, 143: 106010. [7]Patwa R, Shin Y C. Predictive modeling of laser hardening of AISI5150H steels[J]. International Journal of Machine Tools and Manufacture, 2007, 47(2): 307-320. [8]郭士锐, 张仕豪, 车江宁, 等. 420B不锈钢牙骨凿表面激光淬火的数值模拟与组织性能[J]. 金属热处理, 2021, 46(4): 147-151. Guo Shirui, Zhang Shihao, Che Jiangning, et al. Numerical simulation of surface laser quenching and microstructure and properties of 420B stainless steel dental chisel[J]. Heat Treatment of Metals, 2021, 46(4): 147-151. [9]张光钧, 吴晓晖, 邢 琪. 45钢激光相变强化梯度组织研究——激光扫描速度的影响[J]. 应用激光, 2003, 23(5): 271-276. Zhang Guangjun, Wu Xiaohui, Xing Qi. The study of the gradient structure of 45 steel by laser transformation hardening (The influence of laser scanning speed)[J]. Journal of Applied Laser, 2003, 23(5): 271-276. [10]王慧萍, 戴建强, 张光钧, 等. 激光工艺参数对45号钢组织和性能的影响[J]. 上海工程技术大学学报, 2004, 18(2): 121-126. Wang Huiping, Dai Jianqiang, Zhang Guangjun, et al. Effects of laser technological parameters on microstructure and properies of 45 steel[J]. Journal of Shanghai University of Engineering Science, 2004, 18(2): 121-126. [11]Ping Xuelong, Fu Hanguang, Wang Kaiming, et al. Effect of laser quenching on microstructure and properties of the surface of track materials[J]. Surface Review and Letters, 2018, 25(8): 1-10. [12]焦咏翔, 邓德伟, 孙 奇, 等. 工艺参数对42CrMo钢激光淬火效果的影响[J]. 金属热处理, 2021, 46(11): 90-96. Jiao Yongxiang, Deng Dewei, Sun Qi, et al. Influence of process parameter on laser quenching effect of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(11): 90-96. [13]杨 振, 樊湘芳, 邱长军, 等. 激光功率对40CrNiMoA钢表面淬火组织和摩擦磨损性能的影响[J]. 金属热处理, 2020, 45(3): 128-133. Yang Zhen, Fan Xiangfang, Qiu Changjun, et al. Effect of laser power on quenched microstructure and friction and wear properties of 40CrNiMoA steel[J]. Heat Treatment of Metals, 2020, 45(3): 128-133. [14]Dongre G, Rajurkar A, Gondil R, et al. Laser surface hardening of SS316L[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1070(1): 012107. [15]吴 钢, 宋光明, 黄婉娟. 激光淬火工艺参数对层深及硬度影响敏感性研究[J]. 激光技术, 2007, 31(2): 163-165, 174. Wu Gang, Song Guangming, Huang Wanjuan. Influence of laser processing parameters on the case-depth and the hardness[J]. Laser Technology, 2007, 31(2): 163-165, 174. [16]Zhao Yong, Chen Chen, Yan Keng, et al. Effects of overlapping distances on steel microstructure and properties after multi-track laser quenching[J]. Journal of Materials Engineering and Performance, 2017, 26: 5973-5982. [17]Park M H, Shibata A, Tsuji N. Grain refinement of 2Mn-0.1C steel by repetitive heat treatment and recrystallization[J]. Iop Conference: Materials Science and Engineering, 2015, 89: 012041. [18]Yang Lu, Ehle L C, Richter S, et al. Influence of multi-pass laser hardening of normalized AISI 4140 on the grain size[J]. Surface and Coatings Technology, 2021, 421: 127434. [19]刘江龙. 激光淬火组织中的碳化物形貌与作用[J]. 材料热处理学报, 1988, 9(2): 66-72. Liu Jianglong. The morphology of carbide & its function in the laser-hardened structure[J]. Transactions of Materials and Heat Treatment, 1988, 9(2): 66-72. [20]张献光, 宫本吾郎, 古原忠. 加热速率对逆转变奥氏体微观组织的影响[J]. 钢铁, 2019, 54(2): 83-89. Zhang Xianguang, Goro Miyamoto, Tadashi Furuhara. Effects of heating rate on microstructure of reverted austenite[J]. Iron and Steel, 2019, 54(2): 83-89. [21]Yang Lu, Meyer H, Radel T. Multi-cycle phase transformation during laser hardening of AISI 4140[C]//11th CIRP Conference on Photonic Technologies. 2020: 919-923. |