[1]Sun B, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface[J]. Acta Materialia, 2019, 178(7): 10-25. [2]Filho I S, Sandim M, Ponge D, et al. Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture[J]. Materials Science and Engineering A, 2019, 754(29): 636-649. [3]Cui Y, Liu Z, Zhuang Z. Quantitative investigations on dislocation based discrete-continuous model of crystal plasticity at submicron scale[J]. International Journal of Plasticity, 2015, 69(2): 54-72. [4]田亚强, 田 耕, 郑小平, 等. 淬火配分贝氏体钢不同位置残余奥氏体C, Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340. Tian Yaqiang, Tian Geng, Zheng Xiaoping, et al. C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels[J]. Acta Metallurgica Sinica, 2019, 55(3): 332-340. [5]Verma A K, Kumar A. Microstructure and mechanical properties of medium manganese steels[J]. Materials Today: Proceedings, 2022, 56(1): 356-367. [6]Zha M, Zhang X H, Zhang H, et al. Achieving bimodal microstructure and enhanced tensile properties of Mg-9Al-1Zn alloy by tailoring deformation temperature during hard plate rolling (HPR)[J]. Journal of Alloys and Compounds, 2018, 765(4): 1228-1236. [7]Zheng Y, Zeng W, Li D, et al. Fracture toughness of the bimodal size lamellar O phase microstructures in Ti-22Al-25Nb (at.%) orthorhombic alloy[J]. Journal of Alloys and Compounds, 2017, 709(3): 511-518. [8]Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(10): 912-915. [9]Park H W, Yanagimoto J. Formation process and mechanical properties of 0.2% carbon steel with bimodal microstructures subjected to heavy-reduction single-pass hot/warm compression[J]. Materials Science and Engineering A, 2013, 567(12): 29-37. [10]Azizi-Alizamini H, Militzer M, Poole W J. A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scripta Materialia, 2007, 57(12): 1065-1068. [11]Hosseini S M, Alishahi M, Najafizadeh A, et al. The improvement of ductility in nano/ultrafine grained low carbon steels via high temperature short time annealing[J]. Materials Letters, 2012, 74(1): 206-208. [12]胡智评, 许云波, 刘 慧, 等. 含δ铁素体Mn-Al系TRIP钢冷轧退火过程的组织性能[J]. 材料研究学报, 2018, 32(3): 177-183. Hu Zhiping, Xu Yunbo, Liu Hui, et al. Microstructure and properties of TRIP steel with δ ferritic Mn-Al during cold rolling annealing[J]. Chinese Journal of Materials Research, 2018, 32(3): 177-183. [13]Lee S W, Han G, Jun T S, et al. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy[J]. Journal of Materials Science and Technology, 2021, 66(4): 139-149. [14]肖洋洋, 詹 华, 崔 磊, 等. 1000 MPa级微合金化冷轧双相钢退火工艺及强韧化机制[J]. 钢铁研究学报, 2019, 31(10): 912-919. Xiao Yangyang, Zhan Hua, Cui Lei, et al. An investigation on annealing process and strengthening and toughening mechanism of 1000 MPa grade microalloyed cold-rolled dual phase steel[J]. Journal of Iron and Steel Research, 2019, 31(10): 912-919. [15]王卫卫, 刘 浏, 李光灜. 高伸长率冷轧双相钢DP980显微组织及性能[J]. 钢铁研究学报, 2019, 31(12): 1053-1057. Wang Weiwei, Liu Liu, Li Guangying. Microstructure and properties of high elongation cold rolled duplex DP980 steel[J]. Journal of Iron and Steel Research, 2019, 31(12): 1053-1057. [16]Zhang R, Xu Z, Deng Y, et al. Characterizing the back stress of ultra-thin metallic sheet via pre-strain tension/bending process[J]. Journal of Materials Processing Technology, 2020, 279(5): 116560. [17]Kim Y, Asghari-Rad P, Lee J, et al. Solid solution induced back-stress in multi-principal element alloys: Experiment and modeling[J]. Materials Science and Engineering A, 2022, 835(2): 142621. [18]张家榕, 李艳芬, 王光全, 等. 热处理对一种双峰晶粒结构超低碳 9Cr-ODS 钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636. Zhang Jiarong, Li Yanfen, Wang Guangquan, et al. Effect of heat treatment on microstructure and mechanical properties of an ultra-low carbon 9Cr-ODS steel with bimodal grain structure[J]. Acta Metallurgica Sinica, 2022, 58(5): 623-636. [19]Liu W, Wei Y, Zhang F, et al. Tensile behavior of ferritic/austenitic iron with a bimodal structure: An atomistic study[J]. Materials Today Communications, 2022, 32: 103883. [20]钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006. |