[1]Lee O S, Han M S, Baek J H. Damage assessment of composite structures subjected to low velocity impact[J]. Key Engineering Materials, 2004, 261(1): 289-294. [2]关志强, 黄维刚, 王 松, 等. 碳含量对低合金耐磨钢组织及耐磨性的影响[J]. 金属热处理, 2012, 37(8): 73-75. Guan Zhiqiang, Huang Weigang, Wang Song, et al. Influence of carbon content on microstructure and abrasive resistance of the low alloy wear resistant steels[J]. Heat Treatment of Metals, 2012, 37(8): 73-75. [3]刘伟建, 李 晶, 霍向东. 高强度低合金耐磨钢NM400的强韧化机制[J]. 钢铁研究学报, 2014, 26(7): 77-82. Liu Weijian, Li Jing, Huo Xiangdong. Mechanism of strengthening and toughening for wear resistant steel NM400 with high strength and low alloy[J]. Journal of Iron and Steel Research, 2014, 26(7): 77-82. [4]程志彦, 郑留伟. 深冷处理对NM500耐磨钢性能与磨损行为的影响[J]. 中国冶金, 2020, 30(12): 65-71. Cheng Zhiyan, Zheng Liuwei. Effect of cryogenic treatment on mechanical properties and wear behavior of NM500 wear resistant steel[J]. China Metallurgy, 2020, 30(12): 65-71. [5]耿志达, 武会宾, 赵爱民, 等. Nb对中碳低合金耐磨钢组织和性能的影响[J]. 工程科学学报, 2015, 37(7): 905-912. Geng Zhida, Wu Huibin, Zhao Aimin, et al. Effect of Nb on the microstructure and mechanical properties of medium-carbon low-alloy wear-resistant steel[J]. Chinese Journal of Engineering, 2015, 37(7): 905-912. [6]吴 翔, 左秀荣, 赵威威, 等. NM500耐磨钢拉伸过程中TiN的破碎机制[J]. 金属学报, 2020, 56(2): 129-136. Wu Xiang, Zuo Xiurong, Zhao Weiwei, et al. Mechanism of TiN fracture during the tensile process of NM500 wear-resistant steel[J]. Acta Metallurgica Sinica, 2020, 56(2): 129-136. [7]彭 军. V、Ti对NM400钢耐磨性能的影响[J]. 金属热处理, 2016, 41(2): 19-22. Peng Jun. Effect of V and Ti on wear resistance of NM400 steel[J]. Heat Treatment of Metals, 2016, 41(2): 19-22. [8]陈康敏, 王 兰, 王树奇, 等. H13钢氧化磨损行为的研究[J]. 摩擦学学报, 2011, 31(4): 317-322. Chen Kangmin, Wang Lan, Wang Shuqi, et al. Oxidative wear behavior of H13 steel[J]. Tribology, 2011, 31(4): 317-322. [9]邓想涛. 低合金耐磨钢组织性能控制及磨损机理研究[D]. 沈阳: 东北大学, 2014. Deng Xiangtao. Microstructure and mechanical property control and wear mechanism study for low alloy abrasion resistant steel[D]. Shenyang: Northeastern University, 2014. [10]王墉哲, 刘俊亮. 回火温度对TiC增强耐磨钢TiC粒子析出行为的影响[J]. 钢铁研究学报, 2015, 27(8): 59-63. Wang Yongzhe, Liu Junliang. Effect of tempering temperature on precipitation behavior of TiC particles in TiC strengthened antifriction steel[J]. Journal of Iron and Steel Research, 2015, 27(8): 59-63. [11]邓 杰, 宋新莉, 郑爱琴, 等. 回火温度对Cu-Cr-Ti马氏体耐磨钢组织及强韧性的影响[J]. 钢铁研究学报, 2019, 31(12): 1031-1038. Deng Jie, Song Xinli, Zheng Aiqin, et al. Effect of tempering temperature on microstructure and mechanical properties of Cu-Cr-Ti martensite wear-resistant steel[J]. Journal of Iron and Steel Research, 2019, 31(12): 1031-1038. [12]康俊雨, 孙新军, 李昭东, 等. TiC和VC在低碳马氏体钢回火中的析出和粗化[J]. 钢铁, 2015, 50(10): 64-70. Kang Junyu, Sun Xinjun, Li Zhaodong, et al. Precipitation and coarsening of TiC and VC in tempering process of low carbon martensite steels[J]. Iron and Steel, 2015, 50(10): 64-70. [13]殷延涛. 新型TiC颗粒增强型耐磨钢的耐磨性能研究[J]. 山东冶金, 2020, 42(1): 42-45. [14]麻 衡. 高Ti耐磨钢TiC析出行为及耐磨机理研究[J]. 山东冶金, 2020, 42(2): 31-34. [15]郑 健. TiC粒子增强低合金耐磨钢NM450SP三体磨损性能研究[J]. 金属材料与冶金工程, 2020, 48(5): 27-31, 35. Zheng Jian. Three-body abrasive wear study for TiC-reinforced low alloy wear resistant steel NM450SP[J]. Metal Materials and Metallurgy Engineering, 2020, 48(5): 27-31, 35. [16]孙新军, 刘罗锦, 梁小凯, 等. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672. Sun Xinjun, Liu Luojin, Liang Xiaokai, et al. TiC precipitation behavior and its effect on abrasion resistance of high titanium wear-resistant steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 661-672. [17]梁小凯. TiC颗粒强化型马氏体耐磨钢的性能研究[J]. 钢铁钒钛, 2017, 38(1): 48-53. Liang Xiaokai. Study on performance of TiC particle reinforced martensite wear-resistant steel[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 48-53. [18]宁嘉沛. TiC增强高锰钢基复合材料的组织与磨料磨损性能[J]. 稀有金属材料与工程, 2020, 49(7): 2407-2416. [19]梁小凯, 孙新军, 雍岐龙, 等. 高钛钢中TiC析出机制[J]. 钢铁研究学报, 2016, 28(9): 71-75. Liang Xiaokai, Sun Xinjun, Yong Qilong, et al. Precipitation of TiC in high Ti steel[J]. Journal of Iron and Steel Research, 2016, 28(9): 71-75. [20]汪大年. 金属塑性成形原理[M]. 北京: 机械工业出版社, 1986. [21]雍岐龙. 钢铁中的第二相[M]. 北京: 冶金工业出版社, 2006. Yong Qilong. Second Phases of Steel[M]. Beijing: Metallurgical Industry Press, 2006. |