[1]Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications[J]. JOM, 2015, 67(6): 1281-1303. [2]Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—An overview[J]. Materials Science and Engineering A, 1998, 243(1-2): 46-65. [3]辛社伟, 周 伟, 李 倩, 等. 1500 MPa级新型超高强中韧钛合金[J]. 中国材料进展, 2021, 40(6): 441-445. Xin Shewei, Zhou Wei, Li Qian, et al. A new type extra-high strength and medium toughness titanium alloy of Ti-1500[J]. Materials China, 2021, 40(6): 441-445. [4]Semiatin S L, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J]. Materials Scienceand Engineering A, 1999, 263(2): 257-271. [5]Wu C, Liang H. Hot deformation and dynamic recrystallization of a near-beta titanium alloy in the β single phase region[J]. Vacuum, 2018, 156: 384-401. [6]Warchomicka F, Poletti C, Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr[J]. Materials Science and Engineering A, 2011, 528(28): 8277-8285. [7]周 琳, 刘运玺, 陈 玮, 等. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图[J]. 稀有金属, 2022, 46(1): 27-35. Zhou Lin, Liu Yunxi, Chen Wei, et al. Thermal deformation behavior and processing map of Ti-4Al-5Mo-6Cr-5V-1Nb alloy[J]. Chinese Journal of Rare Metals, 2022, 46(1): 27-35. [8]周计明, 齐乐华, 陈国定. 热成形中金属本构关系建模方法综述[J]. 机械科学与技术, 2005, 24(2): 212-216. Zhou Jiming, Qi Lehua, Chen Guoding. Investigation on the constitutive relationship of materials forming in high temperature[J]. Mechanical Science and Technology, 2005, 24(2): 212-216. [9]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [10]Rao K P, Hawbolt E B. Development of constitutive relationships using compression testing of a medium carbon steel[J]. Journal of Engineering Materials and Technology, 1992, 114(1): 116-123. [11]Ashby M F. A first report on deformation-mechanism maps[J]. Acta Metallurgica, 1972, 20(7): 887-897. [12]Dyment F, Libanati C M. Self-diffusion of Ti, Zr, and Hf in their hcp phases, and diffusion of Nb95 in hcp Zr[J]. Journal of Materials Science, 1968, 3(4): 349-359. [13]彭小娜. 损伤容限型TC4-DT合金锻件组织性能高控制研究[D]. 西安: 西北工业大学, 2014. Peng Xiaona. Study on the control of microstructure and mechanical properties of damage of tolerance titanium alloy TC4-DT forging[D]. Xi'an: Northwestern Polytechnical University, 2014. [14]Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. [15]Koike J, Shlmoyama Y, Ohnuma I. Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy[J]. Acta Materialia, 2000, 48(9): 2059-2069. [16]Kai L I, Ping Y. Strain-induced α-to-β phase transformation during hot compression in Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 296-304. [17]Liu B, Li Y, Matsumoto H, et al. Enhanced grain refinement through deformation induced α precipitation in hot working of α+ β titanium alloy[J]. Advanced Engineering Materials, 2012, 14(9): 785-789. [18]Fan J, Kou H, Zhang Y, et al. Formation of slip bands and microstructure evolution of Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy during warm deformation process[J]. Journal of Alloys and Compounds, 2019, 770: 183-193. [19]Jones N G, Dashwood R J, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr[J]. Materials Science and Engineering A, 2008, 490(1/2): 369-377. |