[1]Ortiz M, Keddam M, Elias M, et al. Characterization and boriding kinetics of AISI T1 steel[J]. Metallurgical Research and Technology, 2019, 116: 27-31. [2]刘保国, 林 玥, 张世宏, 等. 离子氮化高速钢沉积掺钨类金刚石薄膜的摩擦磨损性能研究[J]. 表面技术, 2016(6): 119-124. Liu Baoguo, Lin Yue, Zhang Shihong, et al. Friction and wear properties of W doped diamond-like carbon film on the ion nitriding HSS substrate[J]. Surface Technology, 2016(6): 119-124. [3]Kovaci H. Effects of shot peening pre-treatment and plasma nitriding parameters on the structural, mechanical and tribological properties of 4140 low-alloy steel[J]. Surface and Coatings Technology, 2019, 358: 256-265. [4]缪小吉, 武计强, 梅文臣, 等. 42CrMo钢离子氮氧共渗与离子渗氮对比研究[J]. 航空制造技术, 2019, 62(21): 64-68. Miao Xiaoji, Wu Jiqiang, Mei Wenchen, et al. Comparative study on plasma oxynitriding and plasma nitriding for 42CrMo steel[J]. Aeronautical Manufacturing Technology, 2019, 62(21): 64-68. [5]武计强, 魏坤霞, 胡 静. 42CrMo钢空气离子氮氧共渗研究[J]. 真空科学与技术学报, 2015, 35(10): 1259-1263. Wu Jiqiang, Wei Kunxia, Hu Jing. Study on air ion nitridation of 42CrMo steel[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(10): 1259-1263. [6]王自力, 陈荣发, 郑志伟, 等. 42CrMo钢活塞杆表面氧氮复合渗层的显微组织和耐磨性能[J]. 金属热处理, 2021, 46(8): 225-229. Wang Zili, Chen Rongfa, Zheng Zhiwei, et al. Microstructure and wear resistance of oxynitriding layer on piston rod surface of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(8): 225-229. [7]钟 厉, 陆 亚. 38CrMoAl 钢循环等离子氮碳氧硫共渗工艺的研究[J]. 金属热处理, 2011, 36(8): 97-100. Zhong Li, Lu Ya. Cycle plasma oxy-sulpho-nitrocarburizing of 38CrMoAl steel[J]. Heat Treatment of Metals, 2011, 36(8): 97-100. [8]王跃华. 高频淬火和多元共渗处理对 38CrMoAl 钢性能的影响[J]. 热加工工艺, 2017, 46(12): 175-178. Wang Yuehua. Effect of high frequency quenching and multi-component Co-permeation treatment on properties of 38CrMoAl steel[J]. Hot Working Technology, 2017, 46(12): 175-178. [9]钟 厉, 王立文, 杨再强. 激光淬火预处理对 40Cr 钢离子碳氮氧硫共渗层组织与性能的影响[J]. 金属热处理, 2014, 39(3): 53-56. Zhong Li, Wang Liwen, Yang Zaiqiang. Effects of laser hardening pretreatment on microstructure and properties of 40Cr steel ion NCOS co-diffusion layer[J]. Heat Treatment of Metals, 2014, 39(3): 53-56. [10]Zhou Hai, Chen Fei, Yao Bin, et al. Research on the properties of inside surface of subsurface pumpbarrel by N-C-O multi-elements penetrating[J]. Surface and Coatings Technology, 2007, 201(9): 5165-5167. [11]麻 恒, 赵晓兵, 魏坤霞, 等. 42CrMo4钢硼氮离子复合渗与离子渗氮对比研究[J]. 表面技术, 2022(4): 121-126. Ma Heng, Zhao Xiaobing, Wei Kunxia, et al. Comparative study of plasma boron-nitriding and plasma nitriding for 42CrMo4 steel[J]. Surface Technology, 2022(4): 121-126. [12]揭晓华, 董小虹, 黄拿灿. H13 钢碳、氮、氧、硫、硼五元共渗层的性能研究[J]. 金属热处理, 2002, 27(7): 21-23. Jie Xiaohua, Dong Xiaohong, Huang Nacan, et al. The properties of H13 steel treated by C-N-O-S-B multi-elements penetrating[J]. Heat Treatment of Metals, 2002, 27(7): 21-23. [13]毛长军, 魏坤霞, 刘细良, 等. 微量钛对离子渗氮渗层特性及性能的影响[J]. 中国表面工程, 2020, 33(1): 34-38. Mao Changjun, Wei Kunxia, Liu Xiliang, et al. Effects of trace titanium on properties and properties of ionic nitriding layer[J]. China Surface Engineering, 2020, 33(1): 34-38. [14]钟 厉, 王帅峰, 门昕皓, 等. 38CrMoAl 钢钛催渗等离子氮化工艺研究[J]. 表面技术, 2021(12): 159-166. Zhong Li, Wang Shuaifeng, Men Xinhao, et al. Research on plasma nitriding process of 38CrMoAl steel with Ti catalyst[J]. Surface Technology, 2021(12): 159-166. [15]Liu Yong, Lao Xingsheng, Dai Chunhui, et al. Study on surface structure and properties of titanium alloy modified by ion nitriding[J]. Materials Science Forum, 2020, 60(5): 24-28. [16]Kong Weicheng, Yu Zhou, Hu Jun. Characterization and tribological performance of titanium nitrides in situ grown on Ti6Al4V alloy by glow discharge plasma nitriding[J]. Journal of Wuhan University of Technology, 2022, 37(1): 76-84. [17]Mao C J, Wei K X, Liu X L, et al. A novel titanium enhanced plasma nitriding for 42CrMo steel[J]. Materials Letters, 2020, 262: 127052. [18]李景阳, 王文波, 秦 林, 等. TD3 钛合金离子渗氮层的摩擦磨损性能[J]. 金属热处理, 2021, 46(9): 258-261. Li Jingyang, Wang Wenbo, Qin Lin, et al. Friction and wear properties of nitrided layer of TD3 titanium alloy[J]. Heat Treatment of Metals, 2021, 46(9): 258-261. [19]钟 厉, 马晨阳, 韩 西, 等. 40Cr钢循环离子渗氮工艺及渗层硬度研究[J]. 表面技术, 2017(2): 154-158. Zhong Li, Ma Chenyang, Han Xi, et al. Study on surface circular plasma nitriding technology and nitrided layer hardness of 40Cr steel[J]. Surface Technology, 2017(2): 154-158. [20]宋 娜, 强 巍, 杨小宁, 等. 稀土元素对 38CrMoAl 钢离子渗氮工艺的影响[J]. 装备环境工程, 2019, 16(9): 74-78. Song Na, Qiang Wei, Yang Xiaoning, et al. Effect of rare earth elements on the ionic nitriding process of 38CrMoAl steel[J]. Equipment Environmental Engineering, 2019, 16(9): 74-78. [21]王 菁, 郭天文, 安艳新, 等. 钛铸件表面离子氮化/涂层复合处理及其性能研究[J]. 稀有金属材料与工程, 2012, 41(3): 518-521. Wang Jing, Guo Tianwen, An Yanxin, et al. Morphologies and properties of the coating on cast pure titanium by ion nitriding/TiN-coated compound treatment[J]. Rare Metal Materials and Engineering, 2012, 41(3): 518-521. [22]刘建睿, 严宏志, 李 算, 等. 离子渗氮工艺参数对4Cr5MoSiV钢表层组织与性能的影响[J]. 表面技术, 2019, 48(8): 199-205. Liu Jianrui, Yan Hongzhi, Li Suan, et al. Effect of ion nitriding process parameters on surface properties of 4Cr5MoSiV steel[J]. Surface Technology, 2019, 48(8): 199-205. [23]刘 晗, 叶雪梅, 孙 泉, 等. 合金元素对离子碳氮共渗层生长动力学影响[J]. 材料热处理学报, 2015, 36(S1): 203-207. Liu Han, Ye Xuemei, Sun Quan, et al. Effect of alloying elements on growth kinetics of plasma nitrocarburized layers[J]. Transactions of Materials and Heat Treatment, 2015, 36(S1): 203-207. [24]王 鼎, 周艳文, 张开策, 等. 离子氮化中氮在典型钢中的扩散行为研究[J/OL]. 材料导报, 2022(S1): 487-492. Wang Ding, Zhou Yanwen, Zhang Kaice, et al. Study on diffusion behavior of nitrogen in typical steel by ionic nitriding[J/OL]. Materials Reports, 2022(S1): 487-492. |