[1]孙耀祖, 王 旭, 王运玲, 等. 汽车用双相钢的研究进展[J]. 中国材料进展, 2015, 36(4): 475-481. Sun Yaozu, Wang Xu, Wang Yunling, et al. Research progress on DP steel for automobiles[J]. Materials China, 2015, 36(4): 475-481. [2]刘清梅, 封娇洁. 汽车轻量化条件下先进高强钢的发展及现状[J]. 轧钢, 2020, 37(4): 65-70. Liu Qingmei, Feng Jiaojie. Development and current situation of advanced high-strength steel under the condition of automobile light weight[J]. Steel Rolling, 2020, 37(4): 65-70. [3]潘红波, 王文芳, 潘 烁, 等. 临界退火温度对冷轧0.11C-7.05Mn 钢组织性能的影响[J]. 金属热处理, 2019, 44(1): 30-34. Pan Hongbo, Wang Wenfang, Pan Shuo, et al. Effect of intercritical annealing temperature on microstructure and properties of cold rolled 0.11C-7.05Mn steel[J]. Heat Treatment of Metals, 2019, 44(1): 30-34. [4]李 岩, 杜敬超, 定 巍, 等. 临界退火温度对中锰TRIP钢组织和性能的影响[J]. 钢铁研究学报, 2018, 30(3): 185-193. LI Yan, Du Jingchao, Ding Wei, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of medium Mn TRIP steel[J]. Journal of Iron and Steel Research, 2018, 30(3): 185-193. [5]李大赵, 庄治华, 申丽媛, 等. 先进高强钢微观组织调控研究现状及发展趋势[J]. 金属热处理, 2019, 44(5): 12-17. Li Dazhao, Zhuang Zhihua, Shen Liyuan, et al. Research status and development trend of microstructure control of advanced high strength steel[J]. Heat Treatment of Metals, 2019, 44(5): 12-17. [6]张宇鹏, 李大赵, 闫志杰, 等. 临界退火工艺对冷轧中锰钢微观组织和力学性能的影响[J]. 材料热处理学报, 2020, 42(5): 72-80. Zhang Yupeng, Li Dazhao, Yan Zhijie, et al. Effect of intercritical annealing process on microstructure and mechanical properties of cold-rolled medium manganese steel[J]. Transactions of Materials and Heat Treatment, 2020, 42(5): 72-80. [7]郭子峰, 郭 佳, 张 衍, 等. 首钢热轧酸洗先进高强钢的开发与发展[J]. 中国冶金, 2019, 29(6): 17-20. Guo Zifeng, Guo Jia, Zhang Yan, et al. Development and process of hot rolled pickled advanced high strength steel of Shougang[J]. China Metallurgy, 2019, 29(6): 17-20. [8]张 楠, 李 岩, 定 巍. 0.2C-5Mn-0.5Si-2.5Al 中锰钢临界退火后的微观组织及力学性能[J]. 金属热处理, 2021, 46(7): 37-42. Zhang Nan, Li Yan, Ding Wei. Microstructure and mechanical properties of 0.2C-5Mn-0.5Si-2.5Al medium manganese steel after intercritical annealing[J]. Heat Treatment of Metals, 2021, 46(7): 37-42. [9]邵成伟, 王俊涛, 赵晓丽, 等. 两相区退火处理含铝中锰钢的组织和力学性能[J]. 钢铁, 2020, 55(5): 87-93. Shao Chengwei, Wang Juntao, Zhao Xiaoli, et al. Microstructure and mechanical properties of intercritically annealed Al-contain medium Mn steel[J]. Iron and Steel, 2020, 55(5): 87-93. [10]周峰峦, 王存宇, 韩 硕, 等. 逆相变退火中锰钢的组织性能与成形极限[J]. 钢铁研究学报, 2019, 31(4): 394-399. Zhou Fengluan, Wang Cunyu, Han Shuo, et al. Study on microstructure, mechanical properties and forming limit curve of ART-annealed medium manganese steel[J]. Journal of Iron and Steel Research, 2019, 31(4): 394-399. [11]Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Materialia, 2018, 146: 60-63. [12]周 玉, 武高辉. 材料分析测试技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007. [13]刘春泉. 高强高塑形中锰钢组织性能调控及奥氏体稳定性研究[D]. 武汉: 武汉科技大学, 2020. [14]杨永刚. 高强塑中锰钢亚稳奥氏体稳定性及回弹行为研究[D]. 北京: 北京科技大学, 2020. [15]胡小龙, 李英龙, 刘德罡, 等. Fe-12Mn-7Al-0.6C(V)轻质钢力学行为[J]. 中国冶金, 2019, 29(2): 39-44. Hu Xiaolong, Li Yinglong, Liu Degang, et al. Mechanical behavior of Fe-12Mn-7Al-0.6C (V) lightweight steels[J]. China Metallurgy, 2019, 29(2): 39-44. [16]雷志国, 王存宇, 周峰栾, 等. 深冷对逆向变处理中锰钢组织性能的影响[J]. 钢铁研究学报, 2021, 33(4): 330-335. Lei Zhiguo, Wang Cunyu, Zhou Fengluan, et al. Effect of cryogenic treatment on microstructure and properties of medium-manganese steel treated by ART-annealing[J]. Journal of Iron and Steel Research, 2021, 33(4): 330-335. [17]王 帅, 陈伟健, 赵征志, 等. 临界退火中锰钢的组织性能和变形行为[J]. 钢铁, 2021, 56(3): 23-28. Wang Shuai, Chen Weijian, Zhao Zhengzhi, et al. Microstructure and properties as well as deformation behavior in an intercritical annealing medium-Mn steel[J]. Iron and Steel, 2021, 56(3): 23-28. |