[1]张文沛, 李欢欢, 胡志力, 等. 车用轻量化铝合金材料本构关系研究进展[J]. 材料导报, 2017, 31(7): 85-89. Zhang Wenpei, Li Huanhuan, Hu Zhili, et al. Progress in constitutive relationship research of aluminum alloy for automobile lightweighting[J]. Materials Reports, 2017, 31(7): 85-89. [2]吴佳松, 蒋怡涵, 王武荣, 等. 7075铝合金板材热冲压成形中的高温摩擦[J]. 工程科学学报, 2020, 42(12): 1631-1638. Wu Jiasong, Jiang Yihan, Wang Wurong, et al. High-temperature friction of 7075 aluminum alloy sheet during hot stamping[J]. Chinese Journal of Engineering, 2020, 42(12): 1631-1638. [3]江海洋, 孙明月, 吴铭方, 等. 7075铝合金热变形连接接头的组织与性能[J]. 金属热处理, 2020, 45(2): 46-50. Jiang Haiyang, Sun Mingyue, Wu Mingfang, et al. Microstructure and properties of 7075 aluminum alloy hot compress bonding joint[J]. Heat Treatment of Metals, 2020, 45(2): 46-50. [4] Hu J L, Wu X J, Hong B, et al. Dislocation density model and microstructure of 7A85 aluminum alloy during thermal deformation[J]. Journal of Central South University, 2021, 28(10): 2999-3007. [5]陶乐晓, 臧金鑫, 张 坤, 等. 新型高强Al-Zn-Mg-Cu合金的热变形行为和热加工图[J]. 材料工程, 2013, 356(1): 16-20. Tao Lexiao, Zang Jinxin, Zhang Kun, et al. Hot deformation behavior and processing map for new Al-Zn-Mg-Cu alloy[J]. Journal of Materials Engineering, 2013, 356(1): 16-20. [6] Dai Q S, Deng Y L, Tang J G et al. Deformation characteristics and strain-compensated constitutive equation for AA5083 aluminum alloy under hot compression[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2252-2261. [7]吴 凯, 韩维群, 张铁军, 等. 2A12铝合金的热压缩行为及热加工图[J]. 金属热处理, 2017, 42(4): 12-17. Wu Kai, Han Weiqun, Zhang Tiejun, et al. Hot compression behavior and processing map of 2A12 aluminum alloy[J]. Heat Treatment of Metals, 2017, 42(4): 12-17. [8]刘晓艳, 潘清林, 路聪阁, 等. 应力时效对Al-Cu-Mg-Ag耐热铝合金组织与性能的影响[J]. 航空材料学报, 2009, 29(3): 27-32. Liu Xiaoyan, Pan Qinglin, Lu Congge, et al. Effects of external stress during aging on microstructure and properties of Al-Cu-Mg-Ag alloy[J]. Journal of Aeronautical Materials, 2009, 29(3): 27-32. [9]叶 拓, 何玉兵, 何文鹏, 等. 轧制态6082-T6铝合金的热压缩力学行为及微观组织分析[J]. 金属热处理, 2022, 47(2): 26-30. Ye Tuo, He Yubing, He Wenpeng, et al. Hot compression behavior and microstructure analysis of as-rolled 6082-T6 aluminum alloy[J]. Heat Treatment of Metals, 2022, 47(2): 26-30. [10]傅 垒, 王宝雨, 林建国, 等. 耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报, 2013, 35(10): 1333-1339. Fu Lei, Wang Baoyu, Lin Jianguo, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J]. Journal of University of Science and Technology Beijing, 2013, 35(10): 1333-1339. [11]刘 萌, 李新亚, 臧 勇, 等. 固溶成形工艺对6016铝合金组织及力学性能的影响[J]. 金属热处理, 2023, 48(2): 138-143. Liu Meng, Li Xinya, Zang Yong, et al. Effect of solution forming process on microstructure and mechanical properties of 6016 aluminum alloy[J]. Heat Treatment of Metals, 2023, 48(2): 138-143. [12]王 冠, 田昌龄, 寇琳媛, 等. 6063铝合金双道次热变形微观组织演变[J]. 金属热处理, 2020, 45(5): 23-28. Wang Guan, Tian Changling, Kou Linyuan, et al. Microstructure evolution of 6063 aluminum alloy during double-pass hot deformation alloy[J]. Heat Treatment of Metals, 2020, 45(5): 23-28. [13] Guo L G, Yang S, Yang H, et al. Processing map of as-cast 7075 aluminum alloy for hot working[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1774-1783. [14]Parvizian F, Güzel A, Jger A, et al. Modeling of dynamic microstructure evolution of EN AW-6082 alloy during hot forward extrusion[J]. Computational Materials Science, 2011, 50(4): 1520-1525. [15] Chen G, Lin F Y, Yao S J, et al. Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions[J]. Journal of Alloys and Compounds, 2016, 674: 26-36. [16]罗 锐, 曹 赟, 邱 宇, 等. 基于BP人工神经网络喷射成形7055铝合金的本构模型[J]. 航空材料学报, 2021, 41(1): 35-44. Luo Rui, Cao Yun, Qiu Yu, et al. Investigation of constitutive model of as-extruded spray-forming 7055 aluminum alloy based on BP artificial neural network[J]. Journal of Aeronautical Materials, 2021, 41(1): 35-44. [17]Zhang H, Li L X, Deng Y, et al. Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures[J]. Materials Characterization, 2007, 58(2): 168-173. [18] Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [19]刘 伟, 吴远志, 邓 彬, 等. 挤压态6061铝合金的力学性能及显微组织[J]. 金属热处理, 2020, 45(9): 172-177. Liu Wei, Wu Yuanzhi, Deng Bin, et al. Mechanical properties and microstructure of extruded 6061 aluminum alloy[J]. Heat Treatment of Metals, 2020, 45(9): 172-177. [20] Yan L M, Shen J, Li J P, et al. Deformation behavior and microstructure of an Al-Zn-Mg-Cu-Zr alloy during hot deformation[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(1): 46-52. [21] Chen B, Tian X L, Li X L, et al. Hot deformation behavior and processing maps of 2099 Al-Lialloy[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1929-1935. [22]Morakabati M, Hajari A. Hot working behavior of near alpha titanium alloy analyzed by mechanical testing and processing map[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1560-1573. [23]Deng L, Zhang H D, Li G A, et al. Processing map and hot deformation behavior of squeeze cast 6082 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2150-2163. [24] Zhang T, Zhang S H, Li L, et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression[J]. Journal of Central South University, 2019, 26(11): 2930-2942. [25]Seshacharyulu T, Medeiros S C, Frazier W G, et al. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure[J]. Materials Science and Engineering A, 2002, 325(1-2): 112-125. [26]李展志, 李慧中, 王海军, 等. 6069铝合金的热变形行为和加工图[J]. 粉末冶金材料科学与工程, 2011, 16(2): 155-161. |