[1]李龙健, 于凤云, 李仁庚, 等. 高性能铜合金研究现状及发展趋势[J]. 特种铸造及有色合金, 2021, 41(3): 293-298. Li Longjian, Yu Fengyun, Li Rengeng, et al. Research progress and development trend of high-performance Cu alloys[J]. Special Casting and Nonferrous Alloys, 2021, 41(3): 293-298. [2] Zheng J, Wang Z, Fang X F, et al. Several factors affecting the quality of resistor[J]. Instrumentation Technology, 2016(11): 1-4. [3]杜晓松, 杨邦朝, 周鸿仁. 锰铜精密电阻薄膜的制备工艺研究[J]. 仪器仪表学报, 2002(S1): 320-321. Du Xiaosong, Yang Bangchao, Zhou Hongren. Preparation of manganin precision resistance thin films[J]. Chinese Journal of Scientific Instrument, 2002(S1): 320-321. [4]Masami Ishikawa, Hidehiko Enomoto, Naohiro Mikamoto, et al. Preparation of thin film resistors with low resistivity and low TCR by heat treatment of multilayered Cu/Ni deposits[J]. Surface and Coatings Technology, 1998, 110(3): 121-127. [5]陈培志. 一种电子元器件用精密电阻合金: 中国, CN108531771A[P]. 2018-09-14. [6]白全智. 精密电阻合金热处理[J]. 仪表材料, 1986(4): 232-238. [7]关 冲, 何金江, 曾 浩, 等. 超高纯CuMn合金材料微观组织和织构演变研究[J]. 稀有金属, 2017, 41(2): 120-125. Guan Chong, He Jinjiang, Zeng Hao, et al. Microstructure and texture evolution of ultra-high pure CuMn alloy material[J]. Chinese Journal of Rare Metal, 2017, 41(2): 120-125. [8]吴启明, 陈爱华. 基于不同温度退火处理下的铜锰合金性能组织变化分析[J]. 中国锰业, 2017, 35(6): 129-131. Wu Qiming, Chen Aihua. An analysis of performance of Cu-Mn alloy on different temperature annealing treatments[J]. China Manganese Industry, 2017, 35(6): 129-131. [9]唐 进. 铜锰合金热处理组织性能研究[J]. 热加工工艺, 2014, 43(12): 191-194, 180. Tang Jin. Microstructure and properties of heat-treated copper-manganese alloy[J]. Hot Working Technology, 2014, 43(12): 191-194, 180. [10]Shafeie Samrand, Guo Sheng, Erhart Paul, et al. Balancing scattering channels: A panoscopic approach toward zero temperature coefficient of resistance using high-entropy alloys[J]. Advanced Materials, 2019, 31(2): 1-12. [11]Devender Gehlawat, Chauhan R P, Sonkawade R G. Experimental conditions induced variation in texture coefficient of crystal planes in Cu/CuO nanostructures[J]. AIP Conference Proceedings, 2011, 1393(1): 155-156. [12]Svoboda M, Karmazin L. Influence of the initial heat treatment on the kinetics of “K state” formation in Ni-20at.%Cr solid solution[J]. Materials Science and Engineering, 1985, 75(1): 9-11. [13]Marceau R K W, Ceguerra A V, Breen A J. Atom probe tomography investigation of heterogeneous short-range ordering in the ‘komplex’ phase state(K-state) of Fe-18Al(at. %)[J]. Intermetallics, 2015, 64: 23-31. [14]朱德荣, 李 豪, 柳 翊, 等. 固溶时效对SLM成形316L不锈钢块体件显微组织及硬度的影响[J]. 金属热处理, 2022, 47(8): 237-241. Zhu Derong, Li Hao, Liu Yi, et al. Effect of solution and aging on microstructure and hardness of 316L stainless steel block formed by SLM[J]. Heat Treatment of Metals, 2022, 47(8): 237-241. [15]郑元凯, 李龙飞, 金 康, 等. Cu含量对重力铸造Al-Cu-Mg-Sc合金组织及力学性能的影响[J]. 金属热处理, 2022, 47(5): 53-58. Zheng Yuankai, Li Longfei, Jin Kang, et al. Influence of Cu content on microstructure and mechanical properties of Al-Cu-Mg-Sc alloy fabricated by gravity die casting[J]. Heat Treatment of Metals, 2022, 47(5): 53-58. [16]Cardoso Giovana Collombaro, Buzalaf Marília Afonso Rabelo, Correa Diego Rafael Nespeque, et al. Effect of thermomechanical treatments on microstructure, phase composition, Vickers microhardness, and Young's modulus of Ti-xNb-5Mo alloys for biomedical applications[J]. Metals, 2022, 12(5): 788. [17]黄元春, 谭维杨, 张传超, 等. 时效处理对新型Al-5.6Zn-1.6Mg-0.15Zr合金显微组织及耐腐蚀性能的影响[J]. 金属热处理, 2021, 46(1): 161-166. Huang Yuanchun, Tan Weiyang, Zhang Chuanchao, et al. Effect of aging treatment on microstructure and corrosion resistance of new Al-5.6Zn-1.6Mg-0.5Zr alloy[J]. Heat Treatment of Metals, 2021, 46(1): 161-166. [18]Yang Xiaotian, Zeng Rong, Fu Xiaoyue, et al. Influence of the Cu content on the electrochemical corrosion performances of Ni60 coating[J]. Corrosion Science, 2022, 205: 110408. |