[1]邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. Deng Yunlai, Zhang Xinming. Progress in aluminum and aluminum alloy materials[J]. China Journal of Nonferrous Metals, 2019, 29(9): 2115-2141. [2]Georgantzia E, Gkantou M, Kamaris G S. Aluminium alloys as structural material: A review of research[J]. Engineering Structures, 2020, 227: 111372. [3]沈 忱, 孙 会, 郅东东. 7×××系(Al-Zn-Mg-Cu)铝合金淬火特性的研究进展[J]. 有色金属科学与工程, 2018, 9(4): 70-75. Shen Chen, Sun Hui, Zhi Dongdong. Research progress of the quenching characteristics of 7××× (Al-Zn-Mg-Cu) aluminum alloy[J]. Non-ferrous Metal Science and Engineering, 2018, 9(4): 70-75. [4]张允康, 许晓静, 罗 勇, 等. 7075铝合金强化固溶T76处理后的拉伸与剥落腐蚀性能[J]. 稀有金属材料与工程, 2012, 41(S2): 612-615. Zhang Yunkang, Xu Xiaojing, Luo Yong, et al. Tensile property and exfoliation corrosion of 7075 aluminum alloy after enhanced-solid-solution and T76 aging treatment[J]. Rare Metal Materials and Engineering, 2012, 41(S2): 612-615. [5]任建平, 宋仁国. 7050铝合金双级双峰时效强化机理[J]. 稀有金属材料与工程, 2020, 49(4): 1159-1165. Ren Jianping, Song Renguo. Strengthening mechanism of two-stage double-peak aging in 7050 aluminum alloy[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1159-1165. [6]Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2004, 52(16): 4727-4743. [7]Ramgopal T, Gouma P I, Frankel G S. Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150[J]. Corrosion, 2012, 58(8): 687-697. [8]顾瑞瑩, 王武荣, 韦习成. 基于热成形-淬火一体化工艺的7075-T4铝合金板材的高温流变及断裂行为研究[J]. 上海金属, 2019, 41(6): 57-63. Gu Ruiying, Wang Wurong, Wei Xicheng. Study on high- temperature flow behavior and fracture mechanism of 7075-T4 aluminum alloy sheet based on hot forming- quenching integrated process[J]. Shanghai Metal, 2019, 41(6): 57-63. [9]Zhang Z, Zhang X, He D. Forming and warm die quenching process for AA7075 aluminum alloy and its application[J]. Journal of Materials Engineering and Performance, 2020, 29: 620-625. [10]江 河. 锌铝合金时效处理后硬度降低的原因分析[J]. 理化检验(物理分册), 2016, 52(5): 315-319. Jiang He. Reasons analysis on hardness reduction of zinc-aluminium alloy after aging treatment[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2016, 52(5): 315-319. [11]田凯凯, 李全安, 陈晓亚, 等. 热处理对Mg-8Gd-3Y-1.5Zn-0.6Zr合金组织与力学性能的影响[J]. 金属热处理, 2022, 47(11): 54-58. Tian Kaikai, Li Quan'an, Chen Xiaoya, et al. Effect of heat treatment on microstructure and mechanical properties of Mg-8Gd-3Y-1.5Zn-0.6Zr alloy[J]. Heat Treatment of Metals, 2022, 47(11): 54-58. [12]刘敬福, 尹 康, 鹿超超, 等. 时效时间对Zn-5.5Mg-0.4Ba-0.7Gd合金组织及性能的影响[J]. 金属热处理, 2022, 47(12): 78-83. Liu Jingfu, Yin Kang, Lu Chaochao, et al. Effect of aging time on microstructure and properties of Zn-5.5Mg-0.4Ba-0.7Gd alloy[J]. Heat Treatment of Metals, 2022, 47(12): 78-83. [13]何昌德, 任建平, 徐 兵, 等. 7050铝合金双级双峰时效沉淀相的析出过程及作用[J]. 机械工程材料, 2011, 35(6): 38-41. He Changde, Ren Jianping, Xu Bing, et al. Precipitation process and effect of precipitated phases of 7050 aluminum alloy two-stage double peak aging[J]. Materials for Mechanical Engineering, 2011, 35(6): 38-41. [14]毕 江, 刘 雷, 张东生, 等. 铸造、快凝及增材耐热铝合金的研究进展[J]. 中国有色金属学报, 2023, 33(4): 969-996. Bi Jiang, Liu Lei, Zhang Dongsheng, et al. Research progress of casting, rapid solidified and additive manufactured heat resistant aluminum alloy[J]. China Journal of Nonferrous Metals, 2023, 33(4): 969-996. [15]李志强, 王克鲁, 董洪波, 等. 时效处理对5A06铝合金压铸件组织和力学性能的影响[J]. 材料热处理学报, 2021, 42(3): 53-59. Li Zhiqiang, Wang Kelu, Dong Hongbo, et al. Effect of aging treatment on microstructure and mechanical properties of 5A06 aluminum alloy castings[J]. Transactions of Materials and Heat Treatment, 2021, 42(3): 53-59. [16]胡祖麒, 万 里, 吴 晗, 等. 时效处理对高强韧压铸Al-Mg-Si-Mn合金力学性能的影响[J]. 铸造, 2013, 62(1): 13-16. Hu Zuqi, Wan Li, Wu Han, et al. Effect of aging treatment on the mechanical properties of die casting Al-Mg-Si-Mn alloys with high strength and toughness[J]. Casting, 2013, 62(1): 13-16. [17]王学书, 聂 波, 谢延翠. 热处理制度对7075铝合金电导率的影响[J]. 轻合金加工技术, 2001, 29(7): 40-49. Wang Xueshu, Nie Bo, Xie Yancui. Effect of heat-treatment institutions on conductivity of 7075 aluminum alloy[J]. Light Alloy Processing Technology, 2001, 29(7): 40-49. [18]Khalaf A. Mechanism of controlled diffusion solidification: Mixing, nucleation and growth[J]. Acta Materialia, 2016, 103: 301-310. [19]陈康华, 杨 振, 焦慧彬, 等. 最终形变热处理对Al-Zn-Mg-Cu铝合金组织和性能的影响[J]. 湖南大学学报: 自然科学版, 2019, 46(6): 24-30. Chen Kanghua, Yang Zhen, Jiao Huibin, et al. Influence of final thermo-mechanical treatment on microstructures and properties of Al-Zn-Mg-Cu aluminium alloy[J]Journal of Hunan University: Natural Science Edition, 2019, 46(6): 24-30. [20]唐 鹏, 于凤洋, 刘倩男, 等. Sb含量及热处理对Al-11.5Si-9.5Mg合金组织与性能的影响[J]. 稀有金属, 2020, 46(4): 428-437. Tang Peng, Yu Fengyang, Liu Qiannan, et al. Microstructure and properties of Al-11.5Si-9.5Mg alloy with Sb addition and heat treatment[J]. Rare Metals, 2020, 46(4): 428-437. [21]Wu C T, Lee S L, Hsieh M H, et al. Effects of Fe content on microstructure and mechanical properties of A206 alloy[J]. Materials Characterization, 2000, 61(11): 1074-1079. [22]Yuan W, Liang Z. Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor[J]. Materials and Design, 2011, 32(8/9): 4195-4200. |