金属热处理 ›› 2023, Vol. 48 ›› Issue (7): 223-236.DOI: 10.13251/j.issn.0254-6051.2023.07.039
陈柏森1, 孟君晟1, 王铀2, 史晓萍1
收稿日期:
2022-12-22
修回日期:
2023-05-11
出版日期:
2023-07-25
发布日期:
2023-09-04
通讯作者:
孟君晟,副教授,E-mail:mengjs2008@163.com
作者简介:
陈柏森(1999—),男,硕士研究生,主要研究方向为等离子喷涂纳米涂层,E-mail:779075056@qq.com。
基金资助:
Chen Baisen1, Meng Junsheng1, Wang You2, Shi Xiaoping1
Received:
2022-12-22
Revised:
2023-05-11
Online:
2023-07-25
Published:
2023-09-04
摘要: 在现代工业中,等离子喷涂技术已成为提高机械零件表面耐磨、耐蚀性的重要方法。纳米粉体作为喷涂材料,能有效提高等离子喷涂涂层的耐磨、耐蚀、抗氧化等性能,在零部件表面防护应用方面具有研究价值,对于节能环保具有重要意义,已成为国内外表面改性领域的研究热点。基于此,在大量文献研究基础上,根据纳米粉体的制备方式,从固相法、液相法、气相法3方面分析总结了国内外关于纳米粉体再造粒技术的研究,阐述了纳米粉体喂料的制备方式,包括喷雾干燥法、机械研磨法、液相前驱体合成法,并重点分析了液相前驱体合成法的制备方式。从等离子喷涂纳米粉体的选择到涂层的制备,详细综述了纳米涂层在耐磨、耐蚀、热障及自润滑方面的应用成果,还归纳分析了等离子喷涂技术中工艺参数(喷涂功率、喷涂距离、喷枪移动速度、喷涂气体参数)对纳米涂层质量的影响规律。最后,探讨了当前等离子喷涂纳米粉体喂料制备中尚需解决的问题和不足,并展望了等离子喷涂纳米涂层的未来研究方向。
中图分类号:
陈柏森, 孟君晟, 王铀, 史晓萍. 等离子喷涂纳米粉体制备技术及涂层研究进展[J]. 金属热处理, 2023, 48(7): 223-236.
Chen Baisen, Meng Junsheng, Wang You, Shi Xiaoping. Research progress on preparation technology and coating of nano-powder by plasma spraying[J]. Heat Treatment of Metals, 2023, 48(7): 223-236.
[1]Khan M N, Shamim T. Effect of operating parameters on a dual-stage high velocity oxygen fuel thermal spray system[J]. Journal of Thermal Spray Technology, 2014, 23(6): 910-918. [2]王 铀. 热喷涂纳米涂层20年回顾与展望[J]. 表面技术, 2016, 45(9): 1-9. Wang You. Review and prospects for 20-year development of thermal sprayed nanocoatings[J]. Surface Technology, 2016, 45(9): 1-9. [3]李长久. 热喷涂技术应用及研究进展与挑战[J]. 热喷涂技术, 2018, 10(4): 1-22. Li Changjiu. Applications, research progresses and future challenges of thermal spray technology[J]. Thermal Spray Technology, 2018, 10(4): 1-22. [4]王 铀. 大力发展纳米表面工程[J]. 热喷涂技术, 2011, 3(1): 8-16. Wang You. To develop nano-surface engineering[J]. Thermal Spray Technology, 2011, 3(1): 8-16. [5]王 铀, 王 亮, 刘赛月, 等. 热喷涂纳米结构La2Zr2O7(LZ)/8YSZ双陶瓷热障涂层[J]. 中国表面工程, 2016, 29(1): 16-24. Wang You, Wang Liang, Liu Saiyue, et al. Nanostructured La2Zr2O7(LZ)/8YSZ double ceramic layer thermal barrier coatings fabricated by thermal spraying[J]. China Surface Engineering, 2016, 29(1): 16-24. [6]Zhou Feifei, Wang You, Chen Wenlong, et al. Fabrication and characterization of novel powder reconstitution derived nanostructured spherical La2(Zr0.75Ce0.25)2O7 feedstock for plasma spraying[J]. Applied Surface Science, 2018, 459(30): 468-476. [7]Fu Qiangang, Zhang Pei, Zhuang Lei, et al. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples[J]. Journal of Materials Science and Technology, 2022, 96: 31-68. [8]徐滨士. 纳米表面工程[M]. 北京: 化学工业出版社, 2003. [9]Taheri K, Gadow R, Killinger A. Exergy analysis as a developed concept of energy efficiency optimized processes: The case of thermal spray processes[J]. Procedia CIRP, 2014, 17: 511-516. [10]姚亿文, 杨飞跃, 赵 爽, 等. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 66-72. Yao Yiwen, Yang Feiyue, Zhao Shuang, et al. Research progress on preparation, structure control and applications of novels ceramic coatings[J]. Materials Reports, 2022, 36(23): 66-72. [11]许中林, 李国禄, 董天顺, 等. 等离子喷涂层磨损/接触疲劳失效行为研究现状[J]. 表面技术, 2014, 43(2): 126-133. Xu Zhonglin, Li Guolu, Dong Tianshun, et al. Research on wear/fatigue failure behavior of plasma spray coating: A review[J]. Surface Technology, 2014, 43(2): 126-133. [12]王 铀, 王超会. 纳米结构热喷涂涂层制备、表征及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017: 9-10. [13]国洪建, 贾均红, 张振宇, 等. 热喷涂技术的研究进展及思考[J]. 材料导报, 2013, 27(3): 38-40. Guo Hongjian, Jia Junhong, Zhang Zhenyu, et al. Research status and prospects of thermal spraying technology[J]. Materials Reports, 2013, 27(3): 38-40. [14]郝丽娜. 纳米石墨烯复合材料的制备及应用研究进展[J]. 化工设计通讯, 2020, 46(3): 76, 80. Hao Lina. Research progress in preparation and application of nanographene composites[J]. Chemical Engineering Design Communications, 2020, 46(3): 76, 80. [15]Khor K A, Yu L G. Global research trends in thermal sprayed coatings technology analyzed with bibliometrics tools[J]. Journal of Thermal Spray Technology, 2015, 24(8): 1346-1354. [16]韩冰源, 杜 伟, 朱 胜, 等. 等离子喷涂典型耐磨涂层材料体系与性能现状研究[J]. 表面技术, 2021, 50(4): 159-171. Han Bingyuan, Du Wei, Zhu Sheng, et al. Study on system and properties of typical wear-resisting coating materials by plasma spraying[J]. Surface Technology, 2021, 50(4): 159-171. [17]Bordes M C, Vicent M, Moreno A, et al. Preparation of feedstocks from nano/submicron-sized TiO2 particles to obtain photocatalytic coatings by atmospheric plasma spraying[J]. Ceramics International, 2014, 40(10): 16213-16225. [18]Sanjai S G, Srideep S, Krishna B A, et al. Synthesis of yttria-stabilized zirconia nano powders for plasma sprayed nano coatings[J]. Materials Today: Proceedings, 2020, 22(4): 1253-1263. [19]Khalaji A D. Preparation and characterization of NiO nanoparticles via solid-state thermal decomposition of nickel(II) Schiff base complexes[Ni(salophen)]and[Ni(Me-salophen)][J]. Journal of Cluster Science, 2013, 24(1): 209-215. [20]彭秧锡, 刘士军. 微波固相反应前驱体热分解法制备纳米氧化铜粉体[J]. 人工晶体学报, 2009, 38(3): 738-741. Peng Yangxi, Liu Shijun. Nanocopper CuO prepared from the precursor synthesized by solid state reaction under microwave irradiation[J]. Journal of Synthetic Crystals, 2009, 38(3): 738-741. [21]史晋宜, 支玉杰. 纳米氧化镍的合成研究[J]. 化工生产与技术, 2021, 27(6): 7-8, 11. Shi Jinyi, Zhi Yujie. Study on the synthesis of nano-nickel oxide[J]. Chemical Production and Technology, 2021, 27(6): 7-8, 11. [22]叶坤煌, 张云鹏. 机械合金化制备Fe65Ni35纳米晶复合粉末的组织演变及磁性能研究[J]. 功能材料, 2019, 50(11): 11089-11094. Ye Kunhuang, Zhang Yunpeng. Microstructure evolution and magnetic properties of Fe65Ni35 nanocrystalline composite powders prepared by mechanical alloying[J]. Journal of Functional Materials, 2019, 50(11): 11089-11094. [23]Liu Shaoyou, Zuo Chenggang, Xia Jie. Solid-state synthesis and photodegradation property of anatase TiO2 micro-nanopowder by sodium replacement[J]. Solid State Sciences, 2021, 115: 106589. [24]Raguram T, Rajni K S. Influence of boron doping on the structural, spectral, optical and morphological properties of TiO2 nanoparticles synthesized by sol-gel technique for DSSC applications[J]. Materials Today: Proceedings, 2020, 33(5): 2110-2115. [25]Triyono D, Hanifah U, Laysandra H. Structural and optical properties of Mg-substituted LaFeO3 nanoparticles prepared by a sol-gel method[J]. Results in Physics, 2020, 16: 102995. [26]曹茂盛, 曹传宝, 徐甲强. 纳米材料学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2002: 188. [27]唐 杰, 杨梨容, 刘 畅, 等. 快燃技术制备Y3Al5O12纳米粉体及其表征[J]. 化学研究与应用, 2022, 34(2): 412-416. Tang Jie, Yang Lirong, Liu Chang, et al. Synthesis and analysis of Y3Al5O12 nanopowders by fast combustion method[J]. Chemical Research and Application, 2022, 34(2): 412-416. [28]杨梨容, 李小伍, 魏成富, 等. 基于快燃技术合成钇铝石榴石纳米粉体及其性能表征[J]. 化工新型材料, 2018, 46(6): 115-118. Yang Lirong, Li Xiaowu, Wei Chengfu, et al. Synthesis and performance analysis of Y3Al5O12 nanopowder by fast combustion method[J]. New Chemical Materials, 2018, 46(6): 115-118. [29]张浩翔. 水热法制备纳米二硫化钼及其性能研究[D]. 南京: 南京邮电大学, 2020: 35-45. Zhang Haoxiang. Study of the hydrothermal synthesis of molybdenum disulfide and Properties characterization[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020: 35-45. [30]Ogunniran K O, Murugadoss G, Thangamuthu R, et al. Evaluation of nanostructured Nd0.7Co0.3FeO3 perovskite obtained via hydrothermal method as anode material in Li-ion battery[J]. Materials Chemistry and Physics, 2020, 248: 122944. [31]Ravichandran A T, Karthick R. Enhanced photoluminescence, structural, morphological and antimicrobial efficacyof Co-doped ZnO nanoparticles prepared by Co-precipitation method[J]. Results in Materials, 2020, 5: 100072. [32]汪海风, 杨 辉, 陈显群, 等. 纳米钴蓝共沉淀法制备技术[J]. 材料科学与工程学报, 2021, 39(2): 235-238. Wang Haifeng, Yang Hui, Chen Xianqun, et al. Preparation of nano cobalt blue co-precipitation method[J]. Journal of Materials Science and Engineering, 2021, 39(2): 235-238. [33]Lv Xuemei, Zhang Yongfa, Wang Ying, et al. Formation of carbon nanofibers/nanotubes by chemical vapor deposition using Al2O3/KOH[J]. Diamond and Related Materials, 2021, 113: 108265. [34]Wang Yinwei, Liu Shoufa, Huang Pengfei, et al. Structural and magnetic properties of mono-dispersed iron carbide (FexCy) nanoparticles synthesized by facial gas phase reaction[J]. Ceramics International, 2019, 45(8): 11119-11124. [35]王以春. 化学气相沉积法制备WSe2纳米颗粒及其电化学性能的研究[D]. 天津: 河北工业大学, 2019: 47-50. Wang Yichun. Study on the electrochemical properties of WSe2 nanoparticles prepared by chemical vapor deposition[D]. Tianjin: Hebei University of Technology, 2019: 47-50. [36]Ohta R, Gerile N, Kaga M, et al. Composite Si-Ni nanoparticles produced by plasma spraying physical vapor deposition for negative electrode in Li-ion batteries[J]. Nanotechnology, 2021, 32(26): 265705. [37]甘传海. 基于物理气相沉积纳米晶硅的锂离子电池负极材料研究[D]. 厦门: 厦门大学, 2020: 46-48. Gan Chuanhai. Research on the anode material of Lithium ion batteries based on physical vapor deposition-nanocrystalline silicon[D]. Xiamen: Xiamen University, 2020: 46-48. [38]孙思佳, 丁 浩, 刘 坤, 等. 水介质中纳米碳酸钙颗粒的解聚和分散[J]. 中国粉体技术, 2018, 24(4): 12-17. Sun Sijia, Ding Hao, Liu Kun, et al. Disaggregation and dispersion of nano-calcium carbonate particles in water medium[J]. China Powder Technology, 2018, 24(4): 12-17. [39]He Jianhong, Lavernia E J. Precipitation phenomenon in nanostructured Cr3C2-NiCr coatings[J]. Materials Science and Engineering A, 2001, 301(1): 69-79. [40]邓路炜, 张晓东, 王东升, 等. 环境障涂层用纳米结构Yb2SiO5粉体喂料的制备与表征[J]. 中国表面工程, 2020, 33(6): 108-117. Deng Luwei, Zhang Xiaodong, Wang Dongsheng, et al. Preparation and characterization of nanostructured Yb2SiO5 feedstock for environmental barrier coatings[J]. China Surface Engineering, 2020, 33(6): 108-117. [41]周飞飞, 刘 敏, 邓春明, 等. 等离子喷涂用纳米结构T′相8YSZ球形喂料及应用展望[J]. 表面技术, 2019, 48(1): 37-42. Zhou Feifei, Liu Min, Deng Chunming, et al. Nanostructured T′ phase 8YSZ spherical feedstocks for plasma spraying and application prospects[J]. Surface Technology, 2019, 48(1): 37-42. [42]王喜忠, 于才渊. 喷雾干燥[M]. 北京: 化学工业出版社, 2003: 86-103. [43]Chi Yunlong, Jiang Jie, Wang Yuxin, et al. Effect of post-spray annealing on the microstructure and corrosion resistance of nano-(Ti, V)N coatings[J]. Surface and Coatings Technology, 2022, 435: 128268. [44]Gu Sicong, Zhu Shizhen, Ma Zhuang, et al. Preparation and properties of ZrB2-MoSi2-glass composite powders for plasma sprayed high temperature oxidation resistance coating on C/SiC composites[J]. Powder Technology, 2019, 345: 544-552. [45]孙 航, 贾均红, 杨 杰, 等. 等离子喷涂用纳米MoO3-Bi2O3复合粉体的制备[J]. 中国粉体技术, 2021, 27(6): 29-36. Sun Hang, Jia Junhong, Yang Jie, et al. Preparation of nano-structured MoO3-Bi2O3 composite powder for plasma spraying[J]. China Powder Science and Technology, 2021, 27(6): 29-36. [46]李凤生, 刘宏英, 陈 静, 等. 微纳米粉体技术理论基础[M]. 北京: 科学出版社, 2010: 200-242. [47]董远达, 马学鸣. 高能球磨法制备纳米材料[J]. 材料科学与工程, 1993(1): 50-54. Dong Yuanda, Ma Xueming. Nano-crystalline materials formed by high energy ball milling[J]. Materials Science and Engineering, 1993(1): 50-54. [48]Ji Gang, Grosdidier T, Liao H L, et al. Spray forming thick nanostructured and microstructured FeAl deposits[J]. Intermetallics, 2005, 13(6): 596-607. [49]Toma F L, Berger L M, Naumann T, et al. Microstructures of nanostructured ceramic coatings obtained by suspension thermal spraying[J]. Surface and Coatings Technology, 2008, 202(18): 4343-4348. [50]Xie Shiming, Song Chen, Liu Shaowu, et al. Dense nanostructured YSZ coating prepared by low-pressure suspension plasma spraying: Atmosphere control and deposition mechanism[J]. Surface and Coatings Technology, 2021, 416(7): 127175. [51]He Pengjiang, Sun Hui, Gui Yunfang, et al. Microstructure and properties of nanostructured YSZ coating prepared by suspension plasma spraying at low pressure[J]. Surface and Coatings Technology, 2015, 261(1): 318-326. [52]黄 威, 马 文, 杨 挺, 等. 溶液等离子喷涂铈酸镧热障涂层的制备及表征[J]. 稀有金属材料与工程, 2020, 49(2): 561-566. Huang Wei, Ma Wen, Yang Ting, et al. Preparation and characterization of La2Ce2O7 thermal barrier coating by solution precursor plasma spray[J]. Rare Metal Materials and Engineering, 2020, 49(2): 561-566. [53]Meng Xiangfeng, Ma Wen, Yang Ting, et al. Microstructure and thermal properties of double rare-earth Co-doped SrZrO3 coating by the solution precursor plasma spray[J]. Journal of Thermal Spray Technology, 2019, 29(1): 125-133. [54]王晋春. 液相等离子喷涂纳米ZrO2/Y2O3涂层的制备、结构和性能研究[D]. 武汉: 武汉理工大学, 2006: 24-38. Wang Jinchun. Study on preparation, structure and properties of nanostructured ZrO2/Y2O3 coatings prepared by solution precursor plasma spray[D]. Wuhan: Wuhan University of Technology, 2006: 24-38. [55]Pan Zhiping, Guo Jianzheng, Li Shuangming, et al. Properties of alumina coatings prepared on silica-based ceramic substrate by plasma spraying and sol-gel dipping methods[J]. Ceramics International, 2021, 47(19): 27453-27461. [56]Mu Yongkun, Zhang Liangbo, Xu Long, et al. Frictional wear and corrosion behavior of AlCoCrFeNi high-entropy alloy coatings synthesized by atmospheric plasma spraying[J]. Entropy, 2020, 22(7): 740. [57]Mi Pengbo, He Jining, Qin Yanfang, et al. Nanostructure reactive plasma sprayed TiCN coating[J]. Surface and Coatings Technology, 2017, 309: 1-5. [58]王 超, 陈小明, 宋仁国. 纳米TiO2含量对等离子喷涂Al2O3/TiO2涂层耐磨性的影响[J]. 金属热处理, 2018, 43(10): 192-196. Wang Chao, Chen Xiaoming, Song Renguo. Effect of nano-TiO2 content on wear resistance of plasma sprayed Al2O3/TiO2 coating[J]. Heat Treatment of Metals, 2018, 43(10): 192-196. [59]Ma Ning, Guo Lei, Cheng Zhenxiong, et al. Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure[J]. Applied Surface Science, 2014, 320: 364-371. [60]熊璇玥. 等离子喷涂纳米及微米氧化铝涂层的制备与性能研究[D]. 大连: 大连海事大学, 2018: 17-30. Xiong Xuanyue. Fabrication and properties of plasma sprayed nanometer and micron alumina coatings[D]. Dalian: Dalian Maritime University, 2018: 17-30. [61]杨 博, 李广荣, 徐 彤, 等. 大气等离子喷涂环境障涂层的预热处理致密化方法[J]. 材料工程, 2021, 49(11): 116-124. Yang Bo, Li Guangrong, Xu Tong, et al. Densification method of air-plasma-sprayed environmental barrier coatings achieved by pre-heat treatment[J]. Journal of Materials Engineering, 2021, 49(11): 116-124. [62]Zhang Fanyong, Li Chao, Yan Shu, et al. Improving hardness and toughness of plasma sprayed Ti-Si-C nano-composite coatings by post Ar-annealing[J]. Ceramics International, 2021, 47(3): 3173-3184. [63]Zhang Bowei, Zhang Qiao, Zhang Zhan, et al. Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(1): 153-160. [64]Daroonparvar M. Effects of bond coat and top coat(including nano zones) structures on morphology and type of formed transient stage oxides at pre-heat treated nano NiCrAlY/nano ZrO2-8%Y2O3 interface during oxidation[J]. Journal of Rare Earths, 2015, 33(9): 983-994. [65]王志平, 费宇杰, 刘延宽. 热障涂层失效机理、改进方法及未来发展方向[J]. 表面技术, 2021, 50(7): 126-137. Wang Zhiping, Fei Yujie, Liu Yankuan. Failure mechanism, improvement method and future development direction of thermal barrier coatings[J]. Surface Technology, 2021, 50(7): 126-137. [66]Wang Yixiong, Zhou Chungen. Effect of Gd2O3 on the microstructure and thermal properties of nanostructured thermal barrier coatings fabricated by air plasma spraying[J]. Progress in Natural Science: Materials International, 2016, 26(4): 362-367. [67]周飞飞, 刘 敏, 邓春明, 等. 等离子喷涂超高温热障涂层用纳米结构La2(Zr0. 75Ce0. 25)2O7球形喂料的研究[J]. 表面技术, 2020, 49(4): 98-103, 112. Zhou Feifei, Liu Min, Deng Chunming, et al. Nanostructured La2(Zr0. 75Ce0. 25)2O7 spherical feedstock for plasma sprayed ultra-high temperature thermal barrier coatings[J]. Surface Technology, 2020, 49(4): 98-103, 112. [68]Gell M, Wang J, Kumar R, et al. Higher temperature thermal barrier coatings with the combined use of yttrium aluminum garnet and the solution precursor plasma spray process[J]. Journal of Thermal Spray Technology, 2018, 27(1): 543-555. [69]Jadhav A, Padture N P, Wu Fang, et al. Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray[J]. Materials Science and Engineering A, 2005, 405(1/2): 313-320. [70]Qian Gang, Feng Yi, Li Bin, et al. Effect of electrical current on the tribological behavior of the Cu-WS2-G composites in air and vacuum[J]. Chinese Journal of Mechanical Engineering, 2013, 26(2): 384-392. [71]Wang Xinpeng, Feng Xiaochun, Lu Cheng, et al. Mechanical and tribological properties of plasma sprayed NiAl composite coatings with addition of nanostructured TiO2/Bi2O3[J]. Surface and Coatings Technology, 2018, 349: 157-165. [72]Kravchenko I N, Kolomeichenko A V, Sharifullin S N, et al. Application of nanostructured coatings by plasma spraying[J]. Journal of Physics Conference, 2018, 1058(1): 012046. [73]He Pengfei, Ma Guozheng, Wang Haidou, et al. Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared bysupersonic atmospheric plasma spraying[J]. Journal of Materials Science and Technology, 2021, 87(28): 216-233. [74]Zhao Dong, Luo Fa, Zhou Wancheng, et al. Effect of critical plasma spray parameter on complex permittivity and microstructure by plasma spraying Cr/Al2O3 coatings[J]. Applied Surface Science, 2013, 264: 545-551. [75]Venkateshwarlu B, Mohammed T B G, Srikanth A. Influence of critical plasma spray parameter on microstructural and tribological characteristics of nanostructured tungsten carbide-cobalt coatings[J]. Procedia Manufacturing, 2019, 30: 339-346. [76]Venkateshwarlu B, Varghese J T. Effect of critical plasma spray parameter on characteristics of nanostructured alumina-titania coatings[J]. Materials Today: Proceedings, 2020, 22(4): 3364-3371. [77]Forghani S M, Ghazali M J, Muchtar A, et al. Mechanical properties of plasma sprayed nanostructured TiO2 coatings on mild steel[J]. Ceramics International, 2014, 40(5): 7049-7056. [78]Van T N, Nguyen T A, Thu Q L, et al. Influence of plasma spraying parameters on microstructure and corrosion resistance of Cr3C2-25NiCr cermet carbide coating[J]. Anti-Corrosion Methods and Materials, 2019, 66(3): 336-342. [79]Schmuecker S M, Clouser D, Kraus T J, et al. Synthesis of metastable chromium carbide nanomaterials and their electrocatalytic activity for the hydrogen evolution reaction[J]. Dalton Transactions, 2017, 46(39): 13524-13530. [80]Liu Xiaomei, He Dingyong, Zhou Zheng, et al. The influence of process parameters on the structure, phase composition, and texture of micro-plasma sprayed hydroxyapatite coatings[J]. Coatings, 2018, 8(3): 106. [81]Pytel M, Kubaszek T, Pędrak P, et al. The influence of process parameters on structure of YSZ coating deposited by plasma spraying on AISI 316L stainless steel surface by APS method and on Ti6Al4V titanium alloy surface by PS-PVD method[J]. Materials Science Forum, 2021, 1016: 1166-1174. [82]孙 轩. Ti-Si-C系反应等离子喷涂涂层组织/性能与形成机理研究[D]. 北京: 北京科技大学, 2021: 20-25. Sun Xuan. Microstructure, properties and formation mechanism of reactive plasma sprayed of Ti-Si-C coatings[D]. Beijing: University of Science and Technology Beijing, 2021: 20-25. [83]Liu Xiaomei, He Dingyong, Wang Yiming, et al. The influence of spray parameters on the characteristics of hydroxyapatite in-flight particles, splats and coatings by micro-plasma spraying[J]. Journal of Thermal Spray Technology, 2018, 27(6): 667-679. [84]丁述宇, 马国政, 丁发军, 等. 等离子喷涂过程基体温度场分布的数值模拟[J]. 中国表面工程, 2019, 32(2): 98-108. Ding Shuyu, Ma Guozheng, Ding Fajun, et al. Numerical simulation on temperature distribution of substrate during plasma spraying[J]. China Surface Engineering, 2019, 32(2): 98-108. [85]Gupta M, Markocsan N, Li X H, et al. Influence of bondcoat spray process on lifetime of suspension plasma-sprayed thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2017, 27(5): 84-97. [86]吴艳鹏, 魏剑辉, 李文戈, 等. 铝合金表面等离子喷涂Al2O3-3%TiO2复合涂层工艺参数优化的研究[J]. 表面技术, 2019, 48(6): 322-331. Wu Yanpeng, Wei Jianhui, Li Wenge, et al. Optimization of plasma spraying process parameters for Al2O3-3%TiO2 composite coating on aluminum alloy[J]. Surface Technology, 2019, 48(6): 322-331. [87]Qin Yanfang, Jiao Qi, Zheng Gaofeng, et al. Effects of spray distance on the microstructure and mechanical properties of reactive plasma sprayed TiCN coatings[J]. Ceramics International, 2018, 44(14): 17230-17239. [88]Chen Wenlong, Liu Min, Xiao Xiaoling, et al. Effect of spray distance on the microstructure and high temperature oxidation resistance of plasma spray-physical vapor deposition 7YSZ thermal barrier coating[J]. Materials Science Forum, 2021, 1035: 511-520. [89]张靓博. 基于高通量制备Ni-Cu-W合金涂层的组织结构与性能研究[D]. 上海: 上海大学, 2021: 5-12. Zhang Liangbo. The research on microstructure and performance of Ni-Cu-W coating prepared by high throughput[D]. Shanghai: Shanghai University, 2021: 5-12. [90]方学锋. 铝合金基体等离子喷涂陶瓷涂层结合性能研究[D]. 南京: 河海大学, 2006: 16-23. Fang Xuefeng. Study on the bonding performance of plasma sprayed ceramic coatingson aluminum alloys substrate[D]. Nanjing: Hohai University, 2006: 16-23. [91]Goral M, Kubaszek T. The influence of process parameters on structure of ceramic coatings deposited by PS-PVD method[J]. Solid State Phenomena, 2017, 267: 243-247. [92]杨文涛. 内孔超音速等离子喷涂Al-25Si涂层工艺及性能研究[D]. 西安: 西安理工大学, 2021: 35-40. Yang Wentao. Study on process and properties of Al-25Si coating by internal diameter-supersonic plasma spraying[D]. Xi'an: Xi'an University of Technology, 2021: 35-40. [93]付倩倩, 通雁鹏. 基于曲面响应法的大气等离子喷涂La2Ce2O7涂层粒子特性与微观结构研究[J]. 粉末冶金技术, 2020, 38(5): 332-339. Fu Qianqian, Tong Yanpeng. Study on characteristics and microstructure of La2Ce2O7 coating by atmospheric plasma spraying based on the response surface method[J]. Powder Metallurgy Technology, 2020, 38(5): 332-339. [94]Khatibnezhad H, Ambriz-vargas F, Ben E F, et al. Role of phase content on the photocatalytic performance of TiO2 coatings deposited by suspension plasma spray[J]. Journal of the European Ceramic Society, 2022, 42(6): 2905-2920. [95]Wan Y P, Prasad V, Wang G X, et al. Model and powder particle heating, melting, resolidification, and evaporation in plasma spraying processes[J]. ASME Journal of Heat and Mass Transfer, 1999, 121(3): 691-699. [96]Zhang Chao, Kanta A F, Li Chengxin, et al. Effect of in-flight particle characteristics on the coating properties of atmospheric plasma-sprayed 8mol% Y2O3-ZrO2 electrolyte coating studying by artificial neural networks[J]. Surface and Coatings Technology, 2009, 204(4): 463-469. [97]Batra R C, Taetragool U. Numerical techniques to find optimal input parameters for achieving mean particles’ temperature and axial velocity in atmospheric plasma spray process[J]. Scientific Reports, 2020, 10(1): 21483. |
[1] | 顾海, 张捷, 孙健华, 吴国庆, 孙中刚. 激光熔化沉积2195铝锂合金微观组织演变及力学性能[J]. 金属热处理, 2023, 48(1): 52-59. |
[2] | 包张飞, 唐丽娜, 吴杏苹, 栾佰峰. 2195铝锂合金的热变形行为[J]. 金属热处理, 2021, 46(8): 144-149. |
[3] | 舒雨锋1,张海鹰2. 数控机床主轴的超音速火焰喷涂与耐磨性[J]. 金属热处理, 2016, 41(8): 128-133. |
[4] | 贺瑞军,孙枫,王琳,佟小军. 马氏体时效不锈钢的离子渗氮[J]. 金属热处理, 2016, 41(5): 129-132. |
[5] | 吴姚莎1,王丽荣1,石澎1,王迪2. 纳米NiCrBSi-TiB2涂层的滑动磨损行为[J]. 金属热处理, 2015, 40(7): 74-77. |
[6] | 刘晓平1,王快社1,胡平1,陈强2. 感应等离子体工艺对制备致密球形钼粉的影响[J]. 金属热处理, 2015, 40(10): 76-80. |
[7] | 赵兵, 路远航, 李章, 骆芳. 低碳钢表面激光熔覆Ni60合金的工艺及性能[J]. 金属热处理, 2014, 39(7): 124-129. |
[8] | 高奇峰, 吴雄喜. 汽车车身TRIP钢板热冲压成形工艺[J]. 金属热处理, 2014, 39(5): 118-121. |
[9] | 郭杰,刘利国,孟国庆,王若衡. QPQ技术提高65Mn钢耐磨性的工艺参数优化[J]. 金属热处理, 2014, 39(2): 116-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn