[1]吕志涛. 国内外油井管产品现状及未来发展趋势分析[J]. 中国市场, 2017(36): 224, 248. [2]李鹤林, 田 伟, 邝献任. 油井管供需形势分析与对策[J]. 钢管, 2010(1): 1-7. Li Helin, Tian Wei, Kuang Xianren. OCTG supply-demand situation and countermeasures[J]. Steel Pipe, 2010(1): 1-7. [3]刘战锋, 陈 妍, 胡海燕, 等. 国内外高强高韧油井管研究现状[J]. 石油管材与仪器, 2017, 3(6): 5-8. Liu Zhanfeng, Chen Yan, Hu Haiyan, et al. Thedomestic and foreign research status of high strength and high toughness of OCTG[J]. Petroleum Tubular Goods & Instruments, 2017, 3(6): 5-8. [4]王有铭, 李曼云, 韦 光. 钢材的控制轧制和控制冷却[M]. 北京: 冶金工业出版社, 1995. [5]Li C S, He S, Ren J Y, et al. The flow stress behavior and constitutive model of Cr8Mo2SiV tool steel during hot deformation[J]. Steel Research International, 2020, 92(3): 2000434-2000445. [6]江 洋, 王宝雨, 霍元明, 等. 25CrMo4钢热压缩变形行为及流变应力本构方程[J]. 塑性工程学报,2020, 27(5): 167-173. Jiang Yang,Wang Baoyu,Huo Yuanming, et al.Thermal compressive deformation behavior and flow stress constitutive equation of 25CrMo4 steel[J]. Journal of Plasticity Engineering, 2020, 27(5): 167-173. [7]王 帅, 赵 阳, 邵国华, 等. 一种中碳高硅弹簧钢的热变形行为及流变应力模型[J]. 轧钢, 2021, 245(6): 42-47, 53. Wang Shuai, Zhao Yang,Shao Guohua, et al. Hot deformation behavior and flow stress prediction model of a medium-carbon and high-silicon spring steel[J]. Steel Rolling, 2021, 245(6): 42-47, 53. [8]谷正官. 控制冷却工艺对V140石油套管组织性能的影响规律研究[D]. 沈阳: 东北大学, 2020. [9]朱明原, 鲁泽凡, 黄 飞, 等. 第二相粒子对V-Ti微合金油井管钢力学性能的影响[J]. 金属热处理, 2011, 36(12):70-73. Zhu Mingyuan, Lu Zefan, Huang Fei, et al. Effect of secondary phase particles on V-Ti microalloy steel of oil country tubular goods (OCTG) mechanical properties[J]. Heat Treatment of Metals, 2011, 36(12):70-73. [10]王 舟, 李亦庄, 何斌斌, 等. 钢铁材料中第二相颗粒强韧化的研究进展[J]. 中国材料进展, 2019, 38(3): 223-230, 250. Wang Zhou, Li Yizhuang, He Binbin, et al. Research progress on second phase strengthening and toughening of advanced steels[J]. Materials China, 2019, 38(3): 223-230, 250. [11]叶 拓, 何玉兵, 何文鹏, 等. 轧制态6082-T6铝合金的热压缩力学行为及微观组织分析[J]. 金属热处理, 2022, 47(2): 26-30. Ye Tuo, He Yubing, He Wenpeng, et al.Hot compression behavior and microstructure analysis of as-rolled 6082-T6 aluminum alloy[J]. Heat Treatment of Metals, 2022, 47(2): 26-30. [12]谢一夔, 王启丞, 陈子坤, 等. 18CrNiMo7-6齿轮钢的热变形行为及组织演变规律[J]. 金属热处理, 2023, 48(2): 103-109. Xie Yikui, Wang Qicheng, Chen Zikun, et al. Hot deformation behavior and microstructure evolution of 18CrNiMo7-6 gear steel[J]. Heat Treatment of Metals, 2023, 48(2): 103-109. [13]李荣斌, 李 博, 张志玺, 等. X12CrMoWVNbN钢的热变形行为及热加工图[J]. 金属热处理, 2022,47(5): 31-40. Li Rongbin, Li Bo, Zhang Zhixi, et al. Hot deformation behavior and processing maps of X12CrMoWVNbN steel[J]. Heat Treatmentof Metals, 2022, 47(5): 31-40. [14]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A,1991, 22(7): 1545-1558. [15]Rajput S K, Chaudhari G P, Nath S K. Characterization of hot deformation behavior of a low carbon steel using processing maps, constitutive equations and Zener-Hollomon parameter[J]. Journal of Materials Processing Technology, 2016, 237: 35-48. [16]徐兆国, 王晓南, 梁冰洁, 等. 热轧780 MPa级超高强大梁钢的热变形行为研究[J]. 轧钢, 2012, 45(5): 5-9. Xu Zhaoguo, Wang Xiaonan, Liang Bingjie, et al.Study on hot deformation behavior of hot-rolled 780 MPa ultra-high-strength crossbeam steel[J]. Steel Rolling, 2012, 45(5): 5-9. |