[1]Totten G E, Albano L L M, 顾剑锋. 21世纪的热处理与表面工程—淬火技术的现状和未来发展[J]. 热处理, 2015, 30(2): 46-53. Totten G E, Albano L L M, Gu J F. Heat treatment and surface engineering in the twenty-first century-quenching: Current status and future developments[J]. Heat Treatment, 2015, 30(2): 46-53. [2]樊东黎. 强烈淬火——一种新的强化钢的热处理方法[J]. 热处理, 2005(4): 1-3. Fan Dongli. Intensive quenching-An up-to-date heat treatment process for strengthening steels[J]. Heat Treatment, 2005(4): 1-3. [3]杨登贵, 朱小硕, 傅宇东, 等. 40Cr钢的强烈淬火+回火处理[J]. 金属热处理, 2023, 48(2): 117-123. Yang Denggui, Zhu Xiaoshuo, Fu Yudong. Intensive quenching and tempering treatment of 40Cr steel[J]. Heat Treatment of Metals, 2023, 48(2): 117-123. [4]曲 喆, 朱小硕, 邢若飞, 等. 一种双漩涡流场强烈淬火槽的设计及流热耦合仿真[J]. 金属热处理, 2021, 46(11): 262-269. Qu Zhe, Zhu Xiaoshuo, Xing Ruofei, et al. Design and fluid-thermal coupling of a strong quenching tank with double vortex flow field[J]. Heat Treatment of Metals, 2021, 46(11): 262-269. [5]樊东黎. 钢件渗碳、强烈淬火、表面强化成套技术的新思路[J]. 金属热处理, 2017, 42(1): 124-126. Fan Dongli. New idea of carburizing, intensive quenching and surface strengthening complex technology for steel parts[J]. Heat Treatment of Metals, 2017, 42(1): 124-126. [6]罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512. Luo Haiwen, Sen Guohui. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metallurgica Sinica, 2020, 56(4): 494-512. [7]Rao K M P, Prabhu K N. Acomparative study on cooling performance of hot oil and molten salt quench media for industrial heat treatment[J]. Journal of Materials Engineering and Performance, 2020, 29: 3494-3501. [8]马永杰. 热处理生产的环保与节能[J]. 热加工工艺, 2006(7): 64-66. Ma Yongjie. Environmental protection and energy conservation in heat treatment production[J]. Hot Working Technology, 2006(7): 64-66. [9]张清华. 低碳合金钢强烈淬火强韧化机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. Zhang Qinghua. The strength-toughening of a intensive quenched low carbon alloy steel[D]. Harbin: Harbin Engineering University, 2012. [10]何祖娟. 20CrMnTi钢渗碳复合强烈淬火强韧化机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. He Zujuan. Study of mechanisms of strengthening and toughening of 20CrMnTi steel treated by cementation and complex intensive quenching[D]. Harbin: Harbin Engineering University, 2011. [11]刘 臣. 渗碳合金钢强烈淬火组织与性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2009. Liu Chen. Research on microstructure and properties of carburized alloy steel treated by intensive quenching process[D]. Harbin: Harbin Engineering University, 2009. [12]Lyublinski E, Vaks E Y, Kobasko N, et al. New Approach for Increasing Corrosion Resistance of Steel[C]//EUROCORR2011 Conference (Stockholm, Sweden, 2011). [13]Kobasko N. Steels of optimal chemical composition combined with intensive quenching[J]. International Heat Treatment and Surface Engineering, 2012, 6(4): 153-159. [14]Kobasko N. Improvement of IQ-3 processes to eliminate crack formation, decrease distortion, and maximize material strength, and ductility[J]. EUREKA Physics and Engineering, 2016(4): 3-10. [15]樊东黎. 美国热处理技术发展路线图的启发[J]. 热处理, 2009, 24(5): 11-16. Fan Dongli. Enlightenment from US heat treatment technology roadmap[J]. Heat Treatment, 2009, 24(5): 11-16. [16]Aronov A, Kobasko N, Powell J, et al. Intensive quenching processes: Basic principles, applications, and commercialization[C]//European Conference on Heat Treatment and 21st IFHTSE Congress. Germany, Munich, 2014: 267-274. [17]Kobasko N I, Aronov M A, Powell J A, et al. Improved production of automotive parts by intensive quench processing[J]. La Metallurgia Italiana, 2006(2): 13-22. [18]Kobasko N. Intensive quenching of limited-hardenability steels saves energy and increases service life of products[C]//Proceedings of the 2nd IASME/WSEAS international conference on Energy and environment. 2007: 273-278. [19]隋佳丽, 李新生, 肖桂勇, 等. 淬火介质表面换热系数的计算方法与应用[J]. 热加工工艺, 2023(14): 137-141. Sui Jiali, Li Xinsheng, Xiao Guiyong, et al. Calculation method and application of surface heat transfer coefficient of quenching medium[J]. Hot Working Technology, 2023(14): 137-141. [20]Maniruzzaman M, Sisson Jr R D. Heat transfer coefficients for quenching process simulation[C]//Journal de Physique IV (Proceedings). EDP Sciences, 2004, 120: 269-276. [21]Osman A M, Beck J V. Investigation of transient heat transfer coefficients in quenching experiments[J]. Journal of Heat Transfer, 1990, 112(4): 853. [22]Passarella D N, Aparicio A, Varas F, et al. Heat transfer coefficient determination of quenching process[J]. Mecánica Computacional, 2014, 33(32): 2009-2021. [23]Kobasko N M. Intensequench process in slow agitated water salt and polymer solutions: Intense quench process[J]. European Journal of Applied Physics, 2021, 3(3): 6-12. [24]Kobasko N. Investigation of batch intensive quenching processes when using hydrodynamic emitters in quench tanks[J]. EUREKA: Physics and Engineering, 2016(6): 29-36. [25]任 鑫, 窦春岳, 高志玉, 等. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194. Ren Xin, Dou Chunyue, Gao Zhiyu, et al. Research progress of numerical simulation in heat treatment[J]. Materials Review, 2021, 35(19): 19186-19194. [26]Kobasko N I, Krukovskyi P, Yurchenko D. Initial and critical heat flux densities evaluated on the basis of CFD modeling and experiments during intensive quenching[C]//Proceedings of the 5th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment. 2007: 25-27. [27]Rath J, Luebben T, Hoffmann F, et al. Generation of compressive residual stresses by high speed water quenching[J]. International Heat Treatment and Surface Engineering, 2010, 4(4): 156-159. [28]Mustak O, Evcil E, Simsir C. Simulation of through-hardening of SAE 52100 steel bearings—Part I: Determination of material properties: Simulation der Durchhärtung vom Wälzlagerstahl SAE 52100-Teil I: Bestimmung der material eigenschaften[J]. Materialwissenschaft und Werkstofftechnik, 2016, 47(8): 735-745. [29]Rath J, Luebben T, Hoffmann F, et al. Generation of compressive residual stresses by high speed water quenching[J]. International Heat Treatment and Surface Engineering, 2010, 4(4): 156-159. [30]Ferguson B L, Freborg A M, Li Z. Residual stress and heat treatment-Process design for bending fatigue strength improvement of carburized aerospace gears[J]. HTM Journal of Heat Treatment and Materials, 2007, 62(6): 279-284. [31]Wang X, Li T, Gao Y. What really governs the upper bound of uniform ductility in gradient or layered materials[J]. Extreme Mechanics Letters, 2021, 48: 101413. [32]Wang Y, Yuan L, Zhang S, et al. The influence of combined gradient structure with residual stress on crack-growth behavior in medium carbon steel[J]. Engineering Fracture Mechanics, 2019, 209: 369-381. [33]Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure[J]. Materials Research Letters, 2014, 2(4): 185-191. [34]Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure[J]. Materials Research Letters, 2016, 4(3): 145-151. [35]Lu K. Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345(6203): 1455-1456. [36]Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility[J]. Acta Materialia, 2016, 112: 337-346. [37]Saha P A, Bhanja A. Applications of stainless steel in automobile industry[J]. Advanced Materials Research, 2013, 794: 731-740. [38]Roodgari M R, Jamaati R, Aval H J. A new method to produce dual-phase steel[J]. Materials Science and Engineering A, 2021, 803: 140695. [39]Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019, 54(19): 12898-12910. [40]Fei F, Sun S, Wei Z, et al. High ductile medium Mn lightweight alloy: The role of intensive quenching and deep cryogenic treatment[J]. Metals, 2023, 13(3): 499. [41]Liang G, Tan Q, Liu Y, et al. Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel[J]. Journal of Materials Science, 2021, 56: 3995-4005. [42]Bobylev S V, Ovid'Ko I A. Stress-driven migration of deformation-distorted grain boundaries in nanomaterials[J]. Acta Materialia, 2015, 88: 260-270. [43]Chen S, Yu Q. The role of low angle grain boundary in deformation of titanium and its size effect[J]. Scripta Materialia, 2019, 163: 148-151. [44]Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science, 2000, 287(5457): 1463-1466. |