[1]赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020, 39(7): 527-534. Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020, 39(7): 527-534. [2]Cui C, Hu B M, Zhao L, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials and Design, 2011, 32(3): 1684-1691. [3]谢华生, 刘时兵, 苏贵桥, 等. 我国钛合金精铸件铸造技术的发展及应用[J]. 特种铸造及有色合金, 2008(S1): 462-464. Xie Huasheng, Liu Shibing, Su Guiqiao, et al. Development and application of investemt casting technology for titanium alloys castings of China[J]. Special Casting and Nonferrous Alloys, 2008(S1): 462-464. [4]Okulov I V, Sarmanova M F, Volegov A S, et al. Effect of boron on microstructure and mechanical properties of multicomponent titanium alloys[J]. Materials Letters, 2015, 158: 111-114. [5]戚运莲, 曾立英, 侯智敏, 等. 硼对TC4/B钛合金铸造组织与性能的影响[J]. 钛工业进展, 2012, 29(6): 15-18. Qi Yunlian, Zeng Liying, Hou Zhimin, et al. Effect of B content on the microstructure and properties of as-cast TC4 /B[J]. Titanium Industry Progress, 2012, 29(6): 15-18. [6]甘致聪, 王 硕, 山圣峰, 等. 微量硼对TiFeCuSnNb合金力学性能的影响[J]. 材料工程, 2021, 49(11): 156-162. Gan Zhicong, Wang Shuo, Shan Shengfeng, et al. Effect of minor boron on mechanical properties of TiFeCuSnNb alloy[J]. Journal of Materials Engineering, 2021, 49(11): 156-162. [7]Gaurav Singh, Upadrasta Ramamurty. Boron modified titanium alloys[J]. Progress in Materials Science, 2020, 111: 100653. [8]罗 皓, 陈志强. 硼改性钛合金研究进展[J]. 材料开发与应用, 2010, 25(4): 77-81. Luo Hao, Chen Zhiqiang. Progress in boron modified titanium alloys[J]. Development and Application of Materials, 2010, 25(4): 77-81. [9]黄立国, 高志玉, 付大军. 少量硼对钛合金组织影响的研究进展[J]. 材料导报, 2015, 29(21): 92-97. Huang Liguo, Gao Zhiyu, Fu Dajun. Research progress of the effects of trace boron on microstructure of titanium alloys[J]. Materials Reports, 2015, 29(21): 92-97. [10]黄菲菲. 原位TiB增强高温钛合金基复合材料的组织与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. Huang Feifei. Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites[D]. Harbin: Harbin Institute of Technology, 2014. [11]Murray J L, Liao P K, Spear K E. The B-Ti (boron-titanium) system[J]. Bulletin of Alloy Phase Diagrams, 1986, 7(6): 550-555. [12]Ji P F, Li B, Chen B H, et al. Effect of Nb addition on the stability and biological corrosion resistance of TiZr alloy passivation films[J]. Corrosion Science, 2020, 170: 108696. [13]炊鹏飞. Nb含量对Zr50Ti50合金显微组织及力学性能影响[J]. 材料热处理学报, 2018, 39(12): 37-41. Chui Pengfei. Effect of Nb content on microstructure and mechanical properties of Zr50Ti50 alloy[J]. Transactions of Materials and Heat Treatment, 2018, 39(12): 37-41. [14]Xu W, Lai M, Gao Y, et al. Effect of boron addition on the microstructure and properties of Ti22Nb6Zr shape memory alloys[J]. Rare Metal Materials and Engineering, 2015, 44(12): 3208-3214. [15]Tamirisakandala S, Bhat R B, Tiley J S, et al. Processing, microstructure, and properties of β titanium alloys modified with boron[J]. Journal of Materials Engineering and Performance, 2005, 14(6): 741-746. [16]Zhu M, Xing L, Fang H, et al. Progresses in dendrite coarsening during solidification of alloys[J]. Acta Metallurgica Sinica, 2018, 54(5): 789-800. [17]Chong Y, Gholizadeh R, Yamamoto K, et al. New insights into the colony refinement mechanism by solute boron atoms in Ti-6Al-4V alloy[J]. Scripta Materialia, 2023, 230: 115397. [18]孙前江, 王高潮, 李淼泉. 细化晶粒对钛合金超塑性的影响[J]. 材料导报, 2010, 24(17): 126-129. Sun Qianjiang, Wang Gaochao, Li Miaoquan. Effect of refining grain on super plasticity of titanium alloy[J]. Materials Reports, 2010, 24(17): 126-129. [19]Chui P. Effect of boron content on microstructure and mechanical properties of Ti50Zr50 alloys[J]. Vacuum, 2018, 154: 25-31. [20]刘统军, 李九霄, 王冀恒, 等. 热处理对铸造TiB+La2O3增强钛基复合材料微观组织和拉伸性能的影响[J]. 金属热处理, 2015, 40(11): 94-98. Liu Tongjun, Li Jiuxiao, Wang Jiheng, et al. Effect of heat treatment on microstructure and tensile properties of in situ synthesized (TiB+La2O3)/Ti composite casting[J]. Heat Treatment of Metals, 2015, 40(11): 94-98. [21]张曼雪, 景 然, 张 雄, 等. 铸态Ti-20Zr-10Nb-xMo合金的微观组织和耐腐蚀性能[J]. 金属热处理, 2022, 47(3): 147-151. Zhang Manxue, Jing Ran, Zhang Xiong, et al. Microstructure and corrosion resistance of as-cast Ti-20Zr-10Nb-xMo alloys[J]. Heat Treatment of Metals, 2022, 47(3): 147-151. [22]姜雪婷, 刘 港, 周 县, 等. Ti-6Al-4V合金渗氮层的生物腐蚀行为[J]. 金属热处理, 2022, 47(1): 197-201. Jiang Xueting, Liu Gang, Zhou Xian, et al. Biological corrosion behavior of nitriding layer of Ti-6Al-4V alloy[J]. Heat Treatment of Metals, 2022, 47(1): 197-201. [23]Ke W, Yong Q Z, Wei J J, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy[J]. Rare Metal Materials and Engineering, 2021, 50(2): 552-561. [24]杨 帆, 吴金平, 郭荻子, 等. Ti-Ta合金在硝酸中电化学腐蚀研究[J]. 钛工业进展, 2018, 35(2): 22-25. Yang Fan, Wu Jinping, Guo Dizi, et al. Research on electrochemical corrosion of Ti-Ta alloy in nitric acid[J]. Titanium Industry Progress, 2018, 35(2): 22-25. [25]何超威, 张可召, 杨 丹, 等. 热处理工艺对Ti-3Al-6Mo-2Fe-2Zr合金组织和性能的影响[J]. 金属热处理, 2021, 46(12): 241-246. He Chaowei, Zhang Kezhao, Yang Dan, et al. Influence of heat treatment process on microstructure and properties of Ti-3Al-6Mo-2Fe-2Zr alloy[J]. Heat Treatment of Metals, 2021, 46(12): 241-246. [26]Bahl S, Raj S, Vanamali S, et al. Effect of boron addition and processing of Ti-6Al-4V on corrosion behaviour and biocompatibility[J]. Materials Technology, 2014, 29(S1): 64-68. [27]Xu W, Chen M, Lu X, et al. Effects of Mo content on corrosion and tribocorrosion behaviours of TiMo orthopaedic alloys fabricated by powder metallurgy[J]. Corrosion Science, 2020, 168: 108557. [28]田文明, 巢昺轩, 李智勇, 等. 晶粒尺寸影响金属钝化行为的研究进展[J]. 失效分析与预防, 2018, 13(2): 130-136. Tian Wenming, Chao Bingxuan, Li Zhiyong, et al. Effects of grain size on passivation of metals-A[J]. Failure Analysis and Prevention, 2018, 13(2): 130-136. [29]Zhang B B, Qiu K J, Wang B L, et al. Surface characterization and cell response of binary TiAg alloys with CP Ti as material control[J]. Journal of Materials Science and Technology, 2012, 28(9): 779-784. [30]赵平平. 钝化膜对钛合金不同腐蚀形态的影响机制研究[D]. 合肥: 中国科学技术大学, 2021. Zhao Pingping. Study on the influence of passive film on different corrosion forms of titanium alloys[D]. Hefei: University of Science and Technology of China, 2021. [31]Jianping X, Hangbiao S, Dizi G, et al. Electrochemical corrosion behavior of Ti35 Alloy in nitric acid containing fluoride ions[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1124-1129. [32]戴世娟, 陈 锋, 王 煜. 新型医用Ti-35Nb-4Sn-6Mo-9Zr和Ti-35Nb-1.3Mo-3.7Zr合金在林格溶液中的电化学腐蚀行为[J]. 稀有金属材料与工程, 2014, 43(S1): 90-95. Dai Shijuan, Chen Feng, Wang Yu. Electrochemical corrosion behaviors of new biomedical titanium alloys Ti-35Nb-4Sn-6Mo-9Zr and Ti-35Nb-1.3Mo-3.7Zr in Ringer's solution[J]. Rare Metal Materials and Engineering, 2014, 43(S1): 90-95. [33]沈雪青, 张玉勤, 蒋业华, 等. SPS烧结Ti-35Nb-7Zr-5Ta合金在Hank's模拟人工体液中的电化学腐蚀行为简[J]. 腐蚀科学与防护技术, 2016, 28(6): 543-548. Shen Xueqing, Zhang Yuin, Jiang Yehua, et al. Corrosion behavior of Ti-35Nb-7Zr-5Ta alloy prepared by spark plasma sintering in Hank's artificial body fluid[J]. Corrosion Science and Protection Technology, 2016, 28(6): 543-548. [34]Tsutsumi Y, Nishimura D, Doi H, et al. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization[J]. Materials Science and Engineering C, 2009, 29(5): 1702-1708. [35]王 璐, 王 峰, 张明伟, 等. 退火工艺对Ti-4Al-2V合金组织及耐蚀性能的影响[J]. 金属热处理, 2022, 47(9): 41-46. Wang Lu, Wang Feng, Zhang Mingwei, et al. Effect of annealing process on microstructure and corrosion resistance of Ti-4Al-2V alloy[J]. Heat Treatment of Metals, 2022, 47(9): 41-46. [36]Lu J, Zhao Y, Niu H, et al. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications[J]. Materials Science and Engineering C, 2016, 62: 36-44. |