[1]Karditsas P J, Lloyd G, Walters M, et al. The european fusion material properties database[J]. Fusion Engineering Design, 2006, 81(8/14): 1225-1229. [2]李姿昕, 张 能, 熊 斌, 等. 材料科学数据库在材料研发中的应用与展望[J]. 数据与计算发展前沿, 2020, 2(2): 78-90. Li Zixin, Zhang Neng, Xiong Bin, et al. Materials science database in material research and development: Recent applications and prospects[J]. Frontiers of Data and Computing, 2020, 2(2): 78-90. [3]尹海清, 姜 雪, 张瑞杰, 等. 材料科学数据共享网及其在材料行业创新发展中的应用[J]. 中国科技资源导刊, 2016, 48(3): 58-65, 71. Yin Haiqing, Jiang Xue, Zhang Ruijie, et al. National materials scientific data sharing network and its application to innovative development of materials industries[J]. Chian Science and Technology Resources Review, 2016, 48(3): 58-65, 71. [4]刘芳宁, 王 越, 孙瑞侠. 材料数据库的现状与发展趋势[J]. 科技创新导报, 2018, 15(34): 149-151. [5]杨 丽, 苏 航, 柴 锋, 等. 材料数据库和数据挖掘技术的应用现状[J]. 中国材料进展, 2019, 38(7): 672-681, 650. Yang Li, Su Hang, Chai Feng, et al. Material database and application status of data mining technology[J]. Materials China, 2019, 38(7): 672-681, 650. [6]Varol T, Canakci A, Ozsahin S. Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks[J]. Journal of Alloys and Compounds, 2018, 739: 1005-1014. [7]Hayajneh M T, Hassan A M, Mayyas A T. Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 559-565. [8]Wilson G, Aruliah D A, Brown C T, et al. Best practices for scientific computing[J]. PLoS Biology, 2014, 12(1): 1001745. [9]杨克功. 钢的等温转变曲线[M]. 哈尔滨: 黑龙江人民出版社, 1981. [10]Faber F A, Hutchison L, Huang B, et al. Prediction errors of molecular machine learning models lower than hybrid dft error[J]. Journal of Chemical Theory and Computation, 2017, 13(11): 5255-5264. [11]Moot T, Isayev O, Call R W, et al. Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode[J]. Materials Discovery, 2016, 6: 9-16. [12]文 成. 基于机器学习的高熵合金成分设计与性能优化[D]. 北京: 北京科技大学, 2022. [13]Li K Q, Liu Y, Kang Q. Estimating the thermal conductivity of soils using six machine learning algorithms[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106139. [14]Press C. Bayesian Data Analysis[M]. Third Edition. Crc Press, 2005. [15]Huang X, Wang H, Xue W, et al. A combined machine learning model for the prediction of time-temperature-transformation diagrams of high-alloy steels[J]. Journal of Alloys and Compounds, 2020, 823: 153694. [16]Speiser J L, Miller M E, Tooze J, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134: 93-101. |