金属热处理 ›› 2023, Vol. 48 ›› Issue (10): 29-36.DOI: 10.13251/j.issn.0254-6051.2023.10.004
李波1, 王豪1, 刘博2, 吴丽娟1, 张群莉1, 姚建华1
收稿日期:
2023-08-16
修回日期:
2023-09-13
出版日期:
2023-10-25
发布日期:
2023-12-07
通讯作者:
张群莉,教授,博士,E-mail:zql@zjut.edu.cn
作者简介:
李 波(1987—),男,副研究员,博士,主要研究方向为激光复合制造,E-mail:libo1011@zjut.edu.cn。
基金资助:
Li Bo1, Wang Hao1, Liu Bo2, Wu Lijuan1, Zhang Qunli1, Yao Jianhua1
Received:
2023-08-16
Revised:
2023-09-13
Online:
2023-10-25
Published:
2023-12-07
摘要: 冷气动力学喷涂,又称冷喷涂(Cold spray,CS),是一种基于喷涂材料塑性变形实现固态沉积技术,可用于金属零部件的表面功能涂层制备以及增材制造/再制造。但目前冷喷涂技术还存在孔隙率高、界面结合弱、塑性差等问题,后续热处理常被用于冷喷涂沉积层微观组织及性能调控的有效手段。因此,本文综述了利用后续热处理调控冷喷涂金属沉积层微观结构及性能的研究现状,通过热处理可以对冷喷涂沉积层的致密性、组织物相以及应力状态等微观特性进行优化,从而改善沉积层的显微硬度、耐磨/耐蚀、导热/导电、强度以及塑性等性能。
中图分类号:
李波, 王豪, 刘博, 吴丽娟, 张群莉, 姚建华. 热处理调控冷喷涂金属沉积层微观特性及性能研究进展[J]. 金属热处理, 2023, 48(10): 29-36.
Li Bo, Wang Hao, Liu Bo, Wu Lijuan, Zhang Qunli, Yao Jianhua. Microstructure and properties of cold-sprayed metal coating optimized by heat-treatment: A review[J]. Heat Treatment of Metals, 2023, 48(10): 29-36.
[1]黄春杰, 殷 硕, 李文亚, 等. 冷喷涂技术及其系统的研究现状与展望[J]. 表面技术, 2021, 50(7): 1-23. Huang Chunjie, Yin Shuo, Li Wenya, et al. Cold spray technology and its system: research status and prospect[J]. Surface Technology, 2021, 50(7): 1-23 [2]吴洪键, 李文波, 邓春明, 等. 冷喷涂增材制造关键技术[J]. 中国表面工程, 2020, 33(4): 1-15. Wu Hongjian, Li Wenbo, Deng Chunming, et al. Key techniques of cold spray additive manufacturing[J]. China Surface Engineering, 2020, 33(4): 1-15. [3]冯仲达, 阿达依·谢尔亚孜旦. 2Cr13钢PVC挤出模冷喷涂修复涂层的性能[J]. 金属热处理, 2023, 48(1): 238-244. Feng Zhongda, Adayi Xieeryazidan. Properties of cold spray repaired coating on 2Cr13 steel extrusion mold for PVC plastic[J]. Heat Treatment of Metals, 2023, 48(1): 238-244. [4]Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications[J]. Additive Manufacturing, 2018, 21: 628-650. [5]刘 奕, 所新坤, 黄 晶, 等. 冷喷涂技术在生物医学领域中的应用及展望[J]. 表面技术, 2016, 45(9): 25-31. Liu Yi, Suo Xinkun, Huang Jing, et al. A review of cold sprayed coatings for biological applications[J]. Surface Technology, 2016, 45(9): 25-31. [6]周红霞, 李成新, 李长久. 冷喷涂制备钛及钛合金涂层研究进展[J]. 中国表面工程, 2020, 33(2): 1-14. Zhou Hongxia, Li Chengxin, Li Changjiu. Research progress of cold sprayed Ti and Ti alloy coatings[J]. China Surface Engineering, 2020, 33(2): 1-14. [7]Yin S, Chen C Y, Suo X K, et al. Cold-sprayed metal coatings with nanostructure[J]. Advances in Materials Science and Engineering, 2018, 2018: 2804576. [8]贾 利, 陈 杰, 崔 烺, 等. 非晶铝基粉末冷喷涂涂层及其耐磨性能[J]. 金属热处理, 2020, 45(5): 250-252. Jia Li, Chen Jie, Cui Lang, et al. Al-based amorphous powder cold sprayed coating and its wear resistance[J]. Heat Treatment of Metals, 2020, 45(5): 250-252. [9]葛 益, 雒晓涛, 李长久. 冷喷涂固态颗粒沉积中颗粒间结合形成机制研究进展[J]. 表面技术, 2020, 49(7): 60-67, 89. Ge Yi, Luo Xiaotao, Li Changjiu. Research progress on interface bonding formation mechanism of solid particle deposition in cold spray[J]. Surface Technology, 2020, 49(7): 60-67, 89. [10]杨理京, 李争显, 黄春良, 等. 激光辅助冷喷涂制备高硬度材料涂层的研究进展[J]. 材料导报, 2018, 32(2): 412-417, 426. Yang Lijing, Li Zhengxian, Huang Chunliang, et al. Producing hard material coatings by laser-assisted cold spray: A technological review[J]. Materials Reports, 2018, 32(2): 412-417, 426. [11]Khun N W, Tan A W Y, Bi K J W, et al. Effects of working gas on wear and corrosion resistances of cold sprayed Ti-6Al-4V coating[J]. Surface and Coatings Technology, 2016, 302: 1-12. [12]张文正, 雒晓涛, 刘 桥, 等. 基于原位微锻造冷喷涂技术的金属涂层研究进展[J]. 材料保护, 2022, 55(1): 34-43. Zhang Wenzheng, Luo Xiaotao, Liu Qiao, et al. Research progress in metallic coatings prepared with the in-situ micro-forging assisted cold spraying[J]. Materials Protection, 2022, 55(1): 34-43. [13]姚建华, 吴丽娟, 李 波, 等. 超音速激光沉积技术: 研究现状及发展趋势[J]. 中国激光, 2019, 46(3): 1-11. Yao Jianhua, Wu Lijuan, Li Bo, et al. Research states and development tendency of supersonic laser deposition technology[J]. Chinese Journal of Lasers, 2019, 46(3): 1-11. [14]Sun W, Tan A W Y, Wu K Q, et al. Post-process treatments on supersonic cold sprayed coatings: A review[J]. Coatings, 2020, 10(2): 123. [15]吴 畏, 张留艳, 郑之栋, 等. 热加工对冷喷涂铝合金块材性能的影响[J]. 金属热处理, 2023, 48(4): 123-129. Wu Wei, Zhang Liuyan, Zheng Zhidong, et al. Effect of hot working on properties of cold sprayed aluminum alloy bulk[J]. Heat Treatment of Metals, 2023, 48(4): 123-129. [16]雒晓涛, 谢 天, 李长久, 等. 冷喷涂金属的组织与性能调控[J]. 中国表面工程, 2020, 33(4): 68-81. Luo Xiaotao, Xie Tian, Li Changjiu, et al. Microstructure and properties tailoring of cold sprayed metals[J]. China Surface Engineering, 2020, 33(4): 68-81. [17]王 强, 翟 乐, 牛文娟, 等. 真空退火热处理对冷喷涂铝基复合材料组织与性能的影响[J]. 金属热处理, 2021, 46(1): 19-27. Wang Qiang, Zhai Le, Niu Wenjuan, et al. Effect of vacuum annealing treatment on microstructure and properties of Al-based composites by cold spray process[J]. Heat Treatment of Metals, 2021, 46(1): 19-27. [18]李文亚, 樊柠松, 殷 硕. 冷喷涂过程中气固两相流动行为及喷涂工艺优化研究新进展[J]. 中国表面工程, 2020, 33(4): 82-101. Li Wenya, Fan Ninsong, Yin Shuo. State-of-the-art of gas-solid two-phase flow behavior during cold spray and process parameters optimization[J]. China Surface Engineering, 2020, 33(4): 82-101. [19]Chen C Y, Xie Y C, Yan X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing[J]. Additive Manufacturing, 2019, 27: 595-605. [20]Morks M F, Zahiri S H, Lang J, et al. The influence of powder morphology on the microstructure and mechanical properties of as-sprayed and heat-treated cold-sprayed CP Ti[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118: 3869-3881. [21]Huang R Z, Sone M, Ma W H, et al. The effects of heat treatment on the mechanical properties of cold-sprayed coatings[J]. Surface and Coatings Technology, 2015, 261: 278-288. [22]Judas J, Zapletal J, Rˇehorˇek L, et al. Effects of annealing temperature on microstructure and mechanical properties of cold sprayed AA7075[J]. Procedia Structural Integrity, 2023, 43: 160-165. [23]Liu Z Q, Wang H T, Wang Y, et al. Comparative study on the annealing of cold-sprayed boron nitride nanosheet/copper coating using spark plasma sintering and atmosphere furnace[J]. Surface and Coatings Technology, 2023, 453: 129041. [24]Yang Y J, Aprilia A, Wu K Q, et al. Post-processing of cold sprayed CoNiCrAlY coatings on Inconel 718 by rapid induction heating[J]. Metals, 2022, 12(3): 396. [25]Sun W, Bhowmik A, Tan A W Y, et al. Improving microstructural and mechanical characteristics of cold-sprayed Inconel 718 deposits via local induction heat treatment[J]. Journal of Alloys and Compounds, 2019, 797: 1268-1279. [26]Yin S, Cizek J, Yan X C, et al. Annealing strategies for enhancing mechanical properties of additively manufactured 316L stainless steel deposited by cold spray[J]. Surface and Coatings Technology, 2019, 370: 353-361. [27]Ren Y P, Zhou D, Xie G W, et al. Effects of different heat treatments on anisotropy of cold sprayed 7075 Al deposits[J]. Materials Characterization, 2023, 199: 112828. [28]Wu D, Li W Y, Liu K, et al. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment[J]. Journal of Materials Science and Technology, 2022, 106: 211-224. [29]Sun W, Chu X, Huang J B, et al. Solution and double aging treatments of cold sprayed Inconel 718 coatings[J]. Coatings, 2022, 12(3): 347. [30]Winnicki M, Baszczuk A, Gibas A, et al. Experimental study on aluminum bronze coatings fabricated by low pressure cold spraying and subsequent heat treatment[J]. Surface and Coatings Technology, 2023, 456: 129260. [31]Novoselova T, Celotto S, Morgan R, et al. Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits[J]. Journal of Alloys and Compounds, 2007, 436: 69-77. [32]Shrestha D, Azarmi F, Tangpong X W. Effect of heat treatment on residual stress of cold sprayed nickel-based superalloy[J]. Journal of Thermal Spray Technology, 2022, 31: 197-205. [33]Xie X, Chen C, Ma Y, et al. Influence of annealing treatment on microstructure and magnetic properties of cold sprayed Ni-coated FeSiAl soft magnetic composite coating[J]. Surface and Coatings Technology, 2019, 374: 476-484. [34]Kim S Y, Luzin V, Sesso M L, et al. The effect of low temperature range heat treatment on the residual stress of cold gas dynamic sprayed Inconel 718 coatings via neutron diffraction[J]. Journal of Thermal Spray Technology, 2020, 29: 1477-1497. [35]Zhou Z P, Chen X, Hu X Z, et al. Influence of heat treatment on microstructure, mechanical property, and corrosion behavior of cold-sprayed Zn coating on Mg alloy substrate[J]. Materials, 2022, 15(19): 6721. [36]John D, Paul T, Orikasa K, et al. Engineered aluminum powder microstructure and mechanical properties by heat treatment for optimized cold spray deposition of high-strength coatings[J]. Journal of Thermal Spray Technology, 2022, 31: 2537-2559. [37]Li W Y, Wu D, Hu K W, et al. A comparative study on the employment of heat treatment, electric pulse processing and friction stir processing to enhance mechanical properties of cold-spray-additive-manufactured copper[J]. Surface and Coatings Technology, 2021, 409: 126887. [38]Loganathan A, Rengifo S, Hernandez A F, et al. Effect of nanodiamond reinforcement and heat-treatment on microstructure, mechanical and tribological properties of cold sprayed aluminum coating[J]. Surface and Coatings Technology, 2021, 412: 127037. [39]Siddique S, Bernussi A A, Husain S W, et al. Enhancing structural integrity, corrosion resistance and wear properties of Mg alloy by heat treated cold sprayed Al coating[J]. Surface and Coatings Technology, 2020, 394: 125882. [40]Tang J, Saha G C, Richter P, et al. Effects of post-spray heat treatment on hardness and wear properties of Ti-WC high pressure cold spray coatings[J]. Journal of Thermal Spray Technology, 2018, 27: 1153-1164. [41]冯 力, 畅继荣, 李洞亭, 等. 热处理对低压冷喷涂铜铝复合涂层耐腐蚀性能的影响[J]. 腐蚀与防护, 2021, 42(2): 8-13. Feng Li, Chang Jirong, Li Dongting, et al. Effects of heat treatment on corrosion resistance of Cu Al composite coating prepared by low pressure cold spraying[J]. Corrosion and Protection, 2021, 42(2): 8-13. [42]Kumar S, Vidyasagar V, Jyothirmayi A, et al. Effect of heat treatment on mechanical properties and corrosion performance of cold-sprayed Tantalum coatings[J]. Journal of Thermal Spray Technology, 2016, 25(4): 745-756. [43]Sundararajan G, Phani P S, Jyothirmayi A, et al. The influence of heat treatment on the microstructural, mechanical and corrosion behavior of cold sprayed SS 316L coatings[J]. Journal of Materials Science, 2009, 44: 2320-2326. [44]张城锋, 邱方苗, 李 波, 等. 激光辅助低压冷喷涂Cu涂层微观结构及导热性能[J]. 中国有色金属学报, 2022, 32(12): 3706-3717. Zhang Chengfeng, Qiu Fangmiao, Li Bo, et al. Microstructure and thermal conductivity of laser-assisted low-pressure cold sprayed Cu coating[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(12): 3706-3717. [45]蒋超伟, 刘 博, 张耘溢, 等. 激光辅助低压冷喷涂CNTs/Cu复合涂层工艺研究[J]. 激光与光电子学进展, 2022, 59(7): 0724001. Jiang Chaowei, Liu Bo, Zhang Yungyi, et al. Process optimization of CNTs/Cu composite coating prepared by laser-assisted low pressure cold spraying[J]. Laser and Optoelectronics Progress, 2022, 59(7): 0724001. [46]张耘溢, 刘 博, 田 凯, 等. 激光辅助低压冷喷涂石墨/Cu基复合涂层研究[J]. 应用激光, 2022, 42(3): 77-85. Zhang Yunyi, Liu Bo, Tian Kai, et al. Study on laser-assisted low pressure cold spraying of graphite/Cu composite coating[J]. Applied Laser, 2022, 42(3): 77-85. [47]Wu L J, Zhang G, Li B, et al. Study on microstructure and tribological performance of diamond/Cu composite coating via supersonic laser deposition[J]. Coatings, 2020, 10(3): 276. [48]Cao K, Yu M, Liang C M, et al. Study on thermal conductivity of cold sprayed Cu coating[J]. Surface Engineering, 2020, 36(10): 1058-1066. [49]徐玲玲, 周香林, 孙澄川, 等. 冷喷涂导热导电铜涂层的制备与研究[J]. 热喷涂技术, 2017, 9(4): 7-12. Xu Lingling, Zhou Xianglin, Sun Chengchuan, et al. Preparation and study of copper coating by cold spray technology on electric conduction and thermal conductivity[J]. Thermal Spray Technology, 2017, 9(4): 7-12. [50]Kikuchi S, Yoshino S, Yamada M, et al. Microstructures and thermal properties of cold-sprayed Cu-Cr composite coatings[J]. Journal of Thermal Spray Technology, 2013, 22(6): 926-931. [51]Seo D, Ogawa K, Sakaguchi K, et al. Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes[J]. Surface and Coatings Technology, 2012, 206: 2316-2324. [52]Winnicki M, Malachowska A, Baszczuk A, et al. Corrosion protection and electrical conductivity of copper coatings deposited by low-pressure cold spraying[J]. Surface and Coatings Technology, 2017, 318: 90-98. [53]Chua A, Park C, Ansell T Y, et al. Mechanical behavior of annealed cold sprayed Cu-Ni coatings[J]. Journal of Thermal Spray Technology, 2022, 31: 574-584. [54]Qiu X, Wang J Q, Tariq N H, et al. Effect of heat treatment on microstructure and mechanical properties of A380 aluminum alloy deposited by cold spray[J]. Journal of Thermal Spray Technology, 2017, 26: 1898-1907. [55]AL-Mangour B, Vo P, Mongrain R, et al. Effect of heat treatment on the microstructure and mechanical properties of stainless steel 316L coatings produced by cold spray for biomedical applications[J]. Journal of Thermal Spray Technology, 2014, 23(4): 641-652. [56]Yu M, Li W Y, Zhang C, et al. Effect of vacuum heat treatment on tensile strength and fracture performance of cold-sprayed Cu-4Cr-2Nb coatings[J]. Applied Surface Science, 2011, 257: 5972-5976. |
[1] | 袁志钟, 王梦飞, 张伯承, 段旭斌, 李表敏, 杨海峰, 罗锐, 程晓农. 冷作模具钢SKD11的热处理增韧技术[J]. 金属热处理, 2023, 48(9): 1-7. |
[2] | 孙博, 聂佳民, 李晓丹, 何长树. 强制冷却和低温时效对2198-T3/7A04-T6异种铝合金FSW接头组织及性能的影响[J]. 金属热处理, 2023, 48(9): 8-13. |
[3] | 王毅, 韩杰, 刘超, 邓玲蕊, 李辉, 许荣昌. DQ-T工艺对1000 MPa级高强钢组织和性能的影响[J]. 金属热处理, 2023, 48(9): 30-34. |
[4] | 陈燕蕊, 吕科, 李岩, 任少卿, 赵明静, 董瑞, 定巍. 烧结温度对2∶17H型高性能SmCo合金微观结构和磁性能的影响[J]. 金属热处理, 2023, 48(9): 35-41. |
[5] | 邵旭, 庞景宇, 纪宇, 汤广全, 刘文强, 程陆凡, 李文. 热加工工艺对Nb37Ti20Al15Zr15Hf5Ta5Mo2W1难熔高熵合金组织与性能影响[J]. 金属热处理, 2023, 48(9): 42-47. |
[6] | 王建, 宋蕾, 王艺卓, 张全福, 任乃栋, 武维康, 王红霞, 罗小萍. 固溶处理对Mg-1Zn-1Ca合金组织和耐蚀性能的影响[J]. 金属热处理, 2023, 48(9): 48-53. |
[7] | 曾勇谋, 刘莹, 刘梓源, 胡梦晗, 曹宇. 退火温度和冷变形量对动力电池壳用3003铝合金板组织和性能的影响[J]. 金属热处理, 2023, 48(9): 70-74. |
[8] | 明章生, 赵杰, 栗克建, 曹鹏军, 朱斌, 冯毅. 强烈淬火工艺制备超高强韧钢的应用展望[J]. 金属热处理, 2023, 48(9): 81-87. |
[9] | 毛福祥, 蒋邵龙, 刘伟, 束文武, 王林涛. 热处理工艺对气阀合金NCF3015组织和性能的影响[J]. 金属热处理, 2023, 48(9): 92-94. |
[10] | 韩伟松, 杜峰, 李建锋, 朱宝辉, 沈立华, 刘意, 王鹏. 变形量对Ti80G合金力学性能的影响[J]. 金属热处理, 2023, 48(9): 95-98. |
[11] | 杨赛玄, 杨晓斌, 陆盼盼, 赵倩, 董治中, 董纪. 1 T磁场下回火工艺对25CrMo48V钢耐蚀性能的影响[J]. 金属热处理, 2023, 48(9): 106-109. |
[12] | 谭国寅. 固溶时效处理对2A14铝合金冲击性能的影响[J]. 金属热处理, 2023, 48(9): 126-128. |
[13] | 宋操, 王晓东, 包喜荣, 陈林, 汤雪娇. Ce对30MnNbRE钢淬火回火微观组织和力学性能的影响[J]. 金属热处理, 2023, 48(9): 143-149. |
[14] | 李文刚, 炊鹏飞, 程尊鹏, 李春梅, 景然, 李江华, 廖仲尼. 硼含量对Ti-Zr-Nb-B合金显微组织及性能的影响[J]. 金属热处理, 2023, 48(9): 157-164. |
[15] | 谢尚恒, 孙有平, 朱嘉欣, 方德俊. 微量Zr对深冷轧制Al-Cu-Mg合金微观组织及性能的影响[J]. 金属热处理, 2023, 48(9): 174-179. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 53
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn