[1]翁宇庆. 我国海洋工程装备用钢需求与趋势: 海洋工程装备与船舶用钢论坛 -“海洋平台用钢国际研讨会”[Z]. 中国海南博鳌, 2013. [2]夏杰生. 发展海洋工程“材料先行”刻不容缓[N]. 中国冶金报, 2014-01-18(004). [3]杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发[J]. 钢铁, 2012, 47(12): 1-8. Yang Caifu, Su Hang. Research and development of high-performance shipbuilding and marine engineering steel[J]. Iron and Steel, 2012, 47(12): 1-8. [4]刘 庚, 李慧杰, 王庆海, 等. 690 MPa级海洋平台用特厚齿条钢的回火稳定性[J]. 东北大学学报(自然科学版), 2022, 43(2): 188-196. Liu Geng, Li Huijie, Wang Qinghai, et al. Tempering stability of a 690 MPa grade ultra-heavy rack steel for offshore platform[J]. Journal of Northeastern University (Natural Science), 2022, 43(2): 188-196. [5]李 班, 张 鑫, 陈祖政, 等. 浅析加工工艺对特厚板厚度方向变形的影响[J]. 宽厚板, 2023, 29(2): 35-41. Li Ban, Zhang Xin, Chen Zuzheng, et al. The brief analysis of processing technology influence on through-thickness deformation of extra heavy steel plate[J]. Wide and Heavy Plate, 2023, 29(2): 35-41. [6]刘罗锦, 梁小凯, 孙新军. 高Ti低合金钢中TiC粒子的固溶及沉淀析出行为[J]. 金属热处理, 2020, 45(4): 110-114. Liu Luojing, Liang Xiaokai, Sun Xinjun. Solution and precipitating behaviors of TiC particles in high Ti low alloy steel[J]. Heat Treatment of Metals, 2020, 45(4): 110-114. [7]韩 荣, 刘洪喜, 尉文超, 等. 回火温度对Ti-V-Mo微合金化马氏体钢析出相和力学性能的影响[J]. 金属热处理, 2021, 46(12): 53-60. Han Rong, Liu Hongxi, Wei Wenchao, et al. Effect of tempering temperature on precipitation and mechanical properties of Ti-V-Mo micro alloyed martensitic steel[J]. Heat Treatment of Metals, 2021, 46(12): 53-60. [8]王晓东, 陈蕴博, 左玲立, 等. V-N微合金化CrSiMn系低合金铸钢中的析出行为[J]. 金属热处理, 2021, 46(8): 15-20. Wang Xiaodong, Chen Yunbo, Zuo Lingli, et al. Precipitation behavior in V-N micro alloyed CrSiMn low alloy cast steel[J]. Heat Treatment of Metals, 2021, 46(8): 15-20. [9]Eman El-shenawy, Reham Reda. Optimization of TMCP strategy for microstructure refinement and flow-productivity characteristics enhancement of low carbon steel[J]. Journal of Materials Research and Technology, 2019, 8(3): 2819-2831. [10]Xiong Wenmin, Song Renbo, Huo Weifeng, et al. Microstructure characteristics and impact fracture mechanisms of Nb and V-Ti micro-alloyed offshore platform steels[J]. Vacuum, 2022, 195: 110709. [11]车立志, 章顺虎, 李 言, 等. 特厚板差温轧制参数建模及优化控制研究现状[J]. 铸造技术, 2023, 44(4): 303-312. Che Lizhi, Zhang Shunhu, Li Yan, et al. Status of research on modelling and optimal control of gradient temperature rolling parameters for ultra-heavy Plates[J]. Foundry Technology, 2023, 44(4): 303-312. [12]Zhou Yanlei, Jia Tao, Zhang Xiangjun, et al. Investigation on tempering of granular bainite in an offshore platform steel[J]. Materials Science and Engineering A, 2015, 626: 352-361. [13]Sun X J, Yuan S F, Xie Z J, et al. Microstructure-property relationship in a high strength-high toughness combination ultra-heavy gauge offshore plate steel: The significance of multiphase microstructure[J]. Materials Science and Engineering A, 2017, 689: 212-219. [14]Militzer Matthias. Thick Plate/Line Pipe Steel (Low-alloyed Steels)[M]. Encyclopedia of Materials: Metals and Alloys, Caballero F G, Oxford: Elsevier, 2022: 115-128. [15]付天亮, 韩 钧, 邓想涛, 等. 特厚钢板射流淬火过程厚向冷速实验研究[J]. 东北大学学报(自然科学版), 2017, 38(11): 1548-1553. Fu Tianliang, Han Jun, Deng Xiangtao, et al. Experimental study on thickness cooling rate of jet impingement quenching for ultra heavy plate[J]. Journal of Northeastern University (Natural Science), 2017, 38(11): 1548-1553. [16]邹雷雷, 黄俊雄, 李权辉, 等. 连铸坯裂纹与偏析预测研究进展[J]. 连铸, 2022, 47(2): 2-9. Zou Leilei, Huang Junxiong, Li Quanhui, et al. Research progress on the crack and segregation prediction of continuous casting strand[J]. Continuous Casting, 2022, 47(2): 2-9. [17]Suikkanen P P, Ristola A, Hirvi A M, et al. Effects of carbon content and cooling path on the microstructure and properties of TRIP-aided ultra-high strength steels[J]. ISIJ International, 2013, 53(2): 337-346. [18]Park Jaeyoung, Han Kyuseok, Woo Jongsoo, et al. Influence of primary annealing condition on texture development in grain-oriented electrical steels[J]. Acta Materialia, 2002, 50(7): 1825-1834. [19]罗衍昭, 张炯明, 肖 超, 等. 低碳Nb--Ti二元微合金钢析出过程的演变[J]. 工程科学学报, 2012, 34(7): 775-782. Luo Yanzhao, Zhang Jiongming, Xiao Chao, et al. Evolution of precipitates in Nb-Ti binary low-carbon micro-alloyed steels[J]. Chinese Journal of Engineering, 2012, 34(7): 775-782. [20]朱瑞琪. 热轧DP600汽车用钢变形及断裂行为研究[D]. 武汉: 武汉科技大学, 2018. [21]Tu Xingyang, Shi Xiaobo, Yan Wei, et al. Tensile deformation behavior of ferrite-bainite dual-phase pipeline steel[J]. Materials Science and Engineering A, 2022, 831: 142230. [22]雍歧龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [23]杨跃标, 邓 深, 樊 雷, 等. 钛微合金化高强钢的组织性能及强化机制[J]. 钢铁, 2019, 54(10): 72-79. Yang Yuebiao, Deng Shen, Fan Lei, et al. Microstructure, mechanical properties and strengthening mechanism of Ti micro-alloyed high strength steel[J]. Iron and Steel, 2019, 54(10): 72-79. [24]李亦庄, 黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493. Li Yizhuang, Huang Mingxin. A method to calculate the dislocation density of a TWIP steel based on neutron diffraction and synchrotron X-ray diffraction[J]. Acta Metallurgica Since, 2020, 56(4): 487-493. |