[1]Guillaume C E. Invar and its applications[J]. Nature, 1904, 71(1832): 134-139. [2]刘 江. 低膨胀合金的应用和发展[J]. 金属功能材料, 2007, 14(5): 33-37. Liu Jiang. Application and development of low expansion alloys[J]. Metallic Functional Materials, 2007, 14(5): 33-37. [3]Park S J, Jo S H, Oh S, et al. Microstructure dependent etching behavior of a partially recrystallized invar alloy[J]. Materials and Design, 2022, 217: 110631. [4]Sahoo A, Medicherla V. Fe-Ni Invar alloys: A review[J]. Materials Today: Proceedings, 2021, 43: 2242-2244. [5]袁均平, 易丹青, 余志明, 等. 变形与热处理对Invar合金组织及性能的影响[J]. 金属热处理, 2005, 30(2): 50-53. Yuan Junping, Yi Danqing, Yu Zhiming, et al. Influence of the deformation and heat treatment on the microstructures and properties of invar alloy[J]. Heat Treatment of Metals, 2005, 30(2): 50-53. [6]Liu Hongwang, Sun Zhonghua, Wang Gongkai, et al. Effect of aging on microstructures and properties of Mo-alloyed Fe-36Ni invar alloy[J]. Materials Science and Engineering A, 2016, 654: 107-112. [7]Sui Q S, Li J X, Zhai Y Z, et al. Effect of alloying with V and Ti on microstructures and properties in Fe-Ni-Mo-C invar alloys[J]. Materialia, 2019, 8: 100474. [8]Zhao Qi, Wu Yingfei, He Jun, et al. Effect of cold drawing on microstructure and properties of the invar alloy strengthened by carbide-forming elements[J]. Journal of Materials Research and Technology, 2021, 13: 1012-1019. [9]郑建军. 超低温轧制因瓦合金薄带的组织与力学性能[D]. 沈阳: 东北大学, 2017: 25-28. Zheng Jianjun. Microstructure and mechanical properties of cryorolled invar alloy thin strips[D]. Shenyang: Northeastern University, 2017: 25-28. [10]师 瑀, 张莹莹, 刘 峰, 等. 面心立方金属晶界工程技术的研究进展[J]. 热加工工艺, 2020, 49(16): 32-36 Shi Yu, Zhang Yingying, Liu Feng, et al. Research progress of grain boundary engineering technology for face-centered cubic metals[J]. Hot Working Technology, 2020, 49(16): 32-36 [11]Kumar M, Schwartz A J, King W E. Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials[J]. Acta Materialia, 2002, 50(10): 2599-2612. [12]He Shuai, Li Changsheng, Zheng Jianjun, et al. Effect of deformation temperature on dynamic recrystallization and CSL grain boundary distribution of Fe-36%Ni invar alloy[J]. Journal of Materials Engineering and Performance, 2018, 27(6): 2759-2765. [13]贺 帅. Fe-36Ni合金热轧板的组织与性能研究[D]. 沈阳: 东北大学, 2016: 37-38. He Shuai. An investigation on microstructure and properties of hot-rolled Fe-36Ni alloy[D]. Shenyang: Northeastern University, 2016: 37-38. [14]Nakama K. Effects of cold-working and heat-treatment conditions and alloying elements on thermal expansion, strength and other properties of Fe-36Ni Invar alloy[J]. Sanyo Technical Report, 2014, 21(1): 38-46. [15]刘意春, 刘 磊, 沈 彬, 等. 晶粒尺寸对电沉积Fe-Ni因瓦合金热膨胀性能的影响[J]. 稀有金属材料与工程, 2011, 40(S2): 280-282. Liu Yichun, Liu Lei, Shen Bin, et al. Influence of grain size on the thermal expansion behaviors of Fe-Ni invar alloy prepared through electrodeposition[J]. Rare Metal Materials and Engineering, 2011, 40(S2): 280-282. [16]董利明, 胡显军, 于照鹏, 等. 热轧工艺对Fe-36Ni合金组织及性能的影响[J]. 材料热处理学报, 2019, 40(8): 124-130. Dong Liming, Hu Xianjun, Yu Zhaopeng, et al. Effect of hot rolling process on microstructure and properties of Fe-36Ni invar alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 124-130. [17]陈保安, 张 强, 王瑞红, 等. 热处理对Fe-Ni合金丝力学性能和膨胀特性的影响[J]. 工程科学学报, 2018, 40(11): 1351-1357. Chen Baoan, Zhang Qiang, Wang Ruihong, et al. Influence of heat treatments on the tensile properties and thermal expansion behavior of Fe-Ni wire[J]. Chinese Journal of Engineering, 2018, 40(11): 1351-1357. |