[1]汪明朴, 贾延琳, 李 周. 先进高强导电铜合金[M]. 长沙: 中南大学出版社, 2015. [2]吴 语, 杨胜利. 高弹性合金Cu-Ni-Sn的研究与发展[J]. 上海有色金属, 2014, 35(1): 38-44. Wu Yu, Yang Shengli. Research and development prospect of high-elastic Cu-Ni-Sn alloy[J]. Shanghai Nonferrous Metals, 2014, 35(1): 38-44. [3]许斯洋, 李英龙, 蔡志辉, 等. 高强高弹铜合金研究及发展趋势[J]. 材料与冶金学报, 2018, 17(4): 300-305, 316. Xu Siyang, Li Yinglong, Cai Zhihui, et al. The current situation and prospect for high-strength and high-elasticity copper alloy[J]. Journal of Materials and Metallurgy, 2018, 17(4): 300-305, 316. [4]Guo Z, Jie J, Liu S, et al. Effect of V addition on microstructures and mechanical properties of Cu-15Ni-8Sn alloy[J]. Materials Science and Engineering A, 2019, 748: 85-94. [5]Shi Yufan, Guo Chengjun, Chen Jinshui, et al. Recrystallization behavior and mechanical properties of a Cu-15Ni-8Sn(P) alloy during prior deformation and aging treatment[J]. Materials Science and Engineering A, 2021, 826: 142025. [6]Xu S, Li Y, Zhang M, et al. The effects of Nb additions on the microstructure evolution in Cu-9Ni-6Sn alloy[J]. Intermetallics, 2022, 143: 107497. [7]赵 超. 高强韧Cu-15Ni-8Sn合金的制备及相关基础研究[D]. 广州: 华南理工大学, 2020. [8]方善锋, 汪明朴, 程建奕, 等. 高强高导Cu-Cr-Zr系合金材料的研究进展[J]. 材料导报, 2003, 17(9): 21-24. Fang Shanfeng, Wang Mingpu, Cheng Jianyi, et al. Recent developments in high strength and high conductivity Cu-Cr-Zr system alloys[J]. Materials Review, 2003, 17(9): 21-24. [9]雷 前, 杨一海, 肖 柱, 等. 高强高导高耐热铜合金的研究进展与展望[J]. 材料导报, 2021, 35(15): 15153-15161. Lei Qian, Yang Yihai, Xiao Zhu, et al. Research progress and prospect on high strength, high conductivity, and high heat resistance copper alloys[J]. Materials Reports, 2021, 35(15): 15153-15161. [10]刘德罡, 胡小龙, 蔡明晖, 等. Fe-11Mn-10Al-0. 9C低密度钢的变形抗力模型和热加工图[J]. 材料与冶金学报, 2018, 17(4): 263-268, 275. Liu Degang, Hu Xiaolong, Cai Minghui, et al. Deformation resistance model and processing map of Fe-11Mn-10Al-0.9C low density steel[J]. Journal of Materials and Metallurgy, 2018, 17(4): 263-268, 275. [11]Prasad Y. Processing maps: A status report[J]. Journal of Materials Engineering and Performance, 2003, 12(6): 638-645. [12]Gegel H L, Malas J C, Doraivelu S M, et al. Modelling Techniques Used in Forging Process Design in: Metals Handbook, Forming and Forging[M]. OH: ASM International, 1988. [13]Gegel H L. Synthesis of Atomistics and Continuum Modeling to Describe Microstructure: Computer Simulation in Material Science[M]. OH: ASM International, 1987. [14]Malas J, Seetharaman V. Using material behavior models to develop process control strategies[J]. JOM, 1992, 44(6): 8-13. [15]Murty S, Rao B. On the development of instability criteria during hot working with reference to IN718[J]. Materials Science and Engineering A, 1998, 254(1/2): 76-82. [16]Semiatin S L, Jonas J J. Formability and Workability of Metals: Plastic Instability and Flow Localization[M]. Ohio: American Society for Metals, 1984. [17]符 君, 于雪梅, 刘 超, 等. TC21合金基于不同失稳判据的热加工图研究[J]. 航空制造技术, 2019, 62(19): 65-74. Fu Jun, Yu Xuemei, Liu Chao, et al. Study on processing map under different instability criterion for TC21 alloy[J]. Aeronautical Manufacturing Technology, 2019, 62(19): 65-74. [18]Han Y, Li C, Ren J, et al. Characterization of hot deformation behavior and processing map of as-cast H13 hot work die steel[J]. Metals and Materials International, 2021, 27: 3574-3589. [19]周 舸. 镍基高温合金高温变形行为及变形机理研究[D]. 沈阳: 东北大学, 2013. [20]马 昕, 许斯洋, 周 舸, 等. Ni60Ti40形状记忆合金的热变形行为[J]. 中国冶金, 2022, 32(9): 26-36. Ma Xin, Xu Siyang, Zhou Ge, et al. Thermal deformation behavior of Ni60Ti40 shape memory alloy[J]. China Metallurgy, 2022, 32(9): 26-36. [21]Murty S V S N, Rao B N, Kashyap B P. On the hot working characteristics of 6061Al-SiC and 6061-Al2O3 particulate reinforced metal matrix composites[J]. Composites Science and Technology, 2003, 63(1): 119-135. |