[1]刘恒三, 祁晔思, 左玲立, 等. 新型H13基体钢的热稳定性[J]. 材料热处理学报, 2020, 41(7): 151-157. Liu Hengsan, Qi Yesi, Zuo Lingli, et al. Thermal stability of a novel H13 die steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 151-157. [2]Edwards D P. Toughness of martensite and bainite in a 3 percent Ni-Cr-Mo-V steel[J]. Journal of the Iron and Steel Institute, 1969, 207(1): 1494-1502. [3]Abbaszadeh K, Saghafian H, Kheirandish S. Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel[J]. Journal of Materials Science and Technology, 2012, 28(4): 336-342. [4]Tomita Y, Okabayashi K. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metallurgical Transactions A, 1985, 16(1): 73-82. [5]何文超, 李志敏, 张 旭, 等. 贝氏体等温淬火对H13热作模具钢组织及热疲劳性能的影响[J]. 材料热处理学报, 2021, 42(5): 81-87. He Wenchao, Li Zhimin, Zhang Xu, et al. Effect of bainite isothermal quenching on microstructure and thermal fatigue performance of H13 hot working die steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 81-87. [6]谢冬柏, 高 飞, 王福会, 等. H13钢的马氏体/贝氏体组织与性能[J]. 金属热处理, 2002, 27(5): 11-14. Xie Dongbai, Gao Fei, Wang Fuhui, et al. M/B microstructure and mechanical properties of H13 steel[J]. Heat Treatment of Metals, 2002, 27(5): 11-14. [7]朱祖昌, 王 琦, 王丽莲, 等. 热作模具钢H13的显微组织分析[J]. 热处理, 2002, 17(2): 21-24. Zhu Zuchang, Wang Qi, Wang Lilian, et al. Analyses on microstructure for H13 hot work die steel[J]. Heat Treatment, 2002, 17(2): 21-24. [8]Joshi S S, Sharma S, Mazumder S, et al. Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: Integrated experimental and computational approach[J]. Journal of Manufacturing Processes, 2021, 68: 852-866. [9]王 明, 马党参, 刘振天, 等. Nb对芯棒用H13钢偏析、液析碳化物及力学性能的影响[J]. 金属学报, 2014, 50(3): 285-293. Wang Ming, Ma Dangshen, Liu Zhentian, et al. Effect of Nb on segregation, primary carbides and toughness of H13 steel[J]. Acta Metallurgica Sinica, 2014, 50(3): 285-293. [10]杨成康, 程晓农, 张 洁, 等. W-Mo-V改进型H13模具钢的力学性能与磨损行为[J]. 金属热处理, 2021, 46(4): 30-37. Yang Chengkang, Cheng Xiaonong, Zhang Jie, et al. Mechanical properties and wear behavior of W-Mo-V modified H13 tool steel[J]. Heat Treatment of Metals, 2021, 46(4): 30-37. [11]Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite[J]. Metallurgical Transactions A, 1983, 14(2): 485-492. [12]Park K T, Kwon H J. Interpretation of the strengthening of steel with lower bainite and martensite mixed microstructure[J]. Metals and Materials International, 2001, 7(2): 95-99. [13]Abbaszadeh P, Kheirandish S, Saghafian H. Effect of austenitizing temperature on mechanical properties of the mixed bainite-martensite microstructure in CrMoV steel[J]. Materials Research, 2017, 21(1): e20170469. [14]Tomita Y, Okabayashi K. Low temperature improvement of the mechanical properties of 4340 type ultrahigh strength steel with heat treating techniques using interrupted quenching method[J]. Metallurgical Transactions A, 1984, 15(12): 2247-2249. [15]Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment[J]. Materials Science and Engineering A, 2006, 438-440: 25-34. [16]Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite[J]. Materials Science and Technology, 1994, 10: 209-214. [17]田亚强, 高天佐, 宋进英, 等. I&Q&PB处理后低碳硅锰贝氏体钢的组织与性能[J]. 金属热处理, 2016, 41(5): 95-98. Tian Yaqiang, Gao Tianzuo, Song Jinying, et al. Microstructure and mechanical properties of low carbon Si-Mn bainitic steel after I&Q&PB processing[J]. Heat Treatment of Metals, 2016, 41(5): 95-98. |