[1]Porter L F, Repas P E. The evolution of HSLA steels[J]. JOM, 1982, 34(4): 14-21. [2]Czyryca E J, Link R E, Wong R J, et al. Development and certification of HSLA-100 steel for naval ship construction[J]. Naval Engineers Journal, 2010, 102(3): 63-82. [3]Akihide N, Takayuki I, Tadashi O. Development of YP 960 and 1100 MPa classultra high strength steel plates with excellent toughness and high resistance to delayed fracture for construction and industrial machinery[J]. JFE Technical Report, 2008(11): 13-18. [4]Ghosh S K, Haldar A, Ganguly S, et al. Development of high-strength Cu-Ni-Ti-B multiphase steel by direct air cooling[J]. Metallurgical and Materials Transactions A, 2008, 39: 2555-2568. [5]Janakiram S, Gautam J P. Recrystallization Texture Evolution in HSLA Steel[M]. Singapore: Springer Singapore, 2018: 135-142. [6]Saha A, Jung J, Olson G B. Computer-aided design of transformation toughened blast resistant naval hull steels: Part I[J]. Journal of Computer-Aided Materials Design, 2007, 14(2): 177-200. [7]Saha A, Jung J, Olson G B. Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II[J]. Journal of Computer-Aided Materials Design, 2007, 14(2): 201-233. [8]Mulholland M D, Seidman D N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel[J]. Acta Materialia, 2011, 59(5): 1881-1897. [9]Gorbatov O I, Gornostyrev Y N, Korzhavyi P A, et al. Effect of Ni and Mn on the formation of Cu precipitates in α-Fe[J]. Scripta Materialia, 2015, 102: 11-14. [10]Haettestrand M, Larsson P, Chai G, et al. Study of decomposition of ferrite in a duplex stainless steel cold worked and aged at 450-500 ℃[J]. Materials Science and Engineering A, 2009, 499(1/2): 489-492. [11]Wen Y R, Li Y P, Hirata A, et al. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys[J]. Acta Materialia, 2013, 61(20): 7726-7740. [12]张贵锋, 黄 昊. 固态相变原理及应用[M]. 北京: 冶金工业出版社, 2011: 162-163. [13]Wang J S, Mulholland M D, Olson G B, et al. Prediction of the yield strength of a secondary-hardening steel[J]. Acta Materialia, 2013, 61(13): 4939-4952. [14]Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel[J]. Acta Materialia, 2017, 140: 258-273. [15]Mulholland M D, Seidman D N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel[J]. Acta Materialia, 2011, 59(5): 1881-1897. [16]Miyamoto G, Iwata N, Takayama N, et al. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application toausformed martensite[J]. Acta Materialia, 2010, 58(19): 6393-6403. [17]Semchysen M, Bond A, Dundas H. Towards Improved Ductility and Toughness[M]. Climax Molybdenum Development Company, 1971. [18]Beigi M S, Hosseini S R, Eshaghi A. Evaluation of phase transformations and mechanical properties in a copper bearing high-strength low-carbon steelmicroalloyed with Nb[J]. Materials Research Express, 2019, 6(10): 106514. [19]李振团, 柴 锋, 罗小兵, 等. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137. Li Z T, Chai F, Luo X B, et al. Effect of aging temperature on mechanical properties of ultra high strength marine engineering steel strengthened by Cu precipitation[J]. Materials Reports, 2020, 34(6): 6132-6137. [20]Feng L, Zhou B, Peng J, et al. Crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R in reactor pressure vessel model steel[J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 707-712. |