[1]娄延春. 铸造手册[M]. 北京: 机械工业出版社, 2021, 3: 4-6. [2]尤申申, 于海华. 核电主设备支承件用12MDV6铸钢成分及热处理工艺对性能的影响[J]. 金属热处理, 2022, 47(6): 186-192. You Shenshen, Yu Haihua. Effects of composition and heat treatment process on properties of 12MDV6 cast steel for nuclear power main equipment supporting[J]. Heat Treatment of Metals, 2022, 47(6): 186-192. [3]许 映, 刘 涛, 龙 威, 等. B+级铸钢中粒状贝氏体的形成原因分析[J]. 材料热处理学报, 2019, 40(8): 105-109. Xu Ying, Liu Tao, Long Wei, et al. Cause analysis of granular bainite formation in B+ grade cast steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 105-109. [4]薛 钢, 杨 澍, 姚润钢. 成分偏析严重的12CrNi2MnCu铸钢冷脆转变特性研究[J]. 金属热处理, 2007, 32(9): 74-77. Xue Gang, Yang Shu, Yao Rungang. Ductile-brittle transition of 12CrNi2MnCu cast steel with severe segregation[J]. Heat Treatment of Metals, 2007, 32(9): 74-77. [5]杨 澍, 张玉祥, 杨超飞, 等. 370 MPa级10CrNiCu铸钢连续冷却相变行为[J]. 材料开发与应用, 2016, 31(5): 10-12. Yang Shu, Zhang Yuxiang, Yang Chaofei, et al. Continuous cooling transformation behavior of 370 MPa 10CrNiCu casting[J]. Development and Application of Materials, 2016, 31(5): 10-12. [6]薛 钢, 杨 澍, 张永辉, 等. 12CrNi2MnCu铸钢异常断口分析[J]. 材料开发与应用, 2006, 21(5): 24-26. Xue Gang, Yang Shu, Zhang Yonghui, et al. An analysis on abnormal fracture of 12CrNi2MnCu casting steel[J]. Development and Application of Materials, 2006, 21(5): 24-26. [7]张永宏, 贺志荣. 30CrMnSi钢过热组织超细化工艺对比研究[J]. 热加工工艺, 2002, 31(4): 27-29, 33. Zhang Yonghong, He Zhirong. Comparing investigation of grain super-refining process of overheated structure in 30CrMnSi steel[J]. Hot Working Technology, 2002, 31(4): 27-29, 33. [8]叶丽燕. 大型核电转子用25Cr2Ni4MoV钢锻造及热处理过程组织演化研究[D]. 北京: 机械科学研究总院, 2020. [9]李海昭, 梁 军, 徐连勇, 等. 循环正火处理对9Cr3W3Co钢组织及冲击韧性的影响[J]. 材料热处理学报, 2017, 38(10): 67-71. Li Haizhao, Liang Jun, Xu Lianyong, et al. Effect of cyclic normalization on microstructure and impact toughness of 9Cr3W3Co steel[J]. Transactions of Materials and Heat Treatment, 2017, 38(10): 67-71. [10]金 锋, 张骁勇, 张雪琴. X90管线钢组织与性能研究[J]. 焊管, 2018, 41(6): 14-18. Jin Feng, Zhang Xiaoyong, Zhang Xueqin. Research on the microstructure and mechanical property of X90 pipeline steel[J]. Welded Pipe and Tube, 2018, 41(6): 14-18. [11]李学达, 尚成嘉, 韩昌柴, 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J]. 金属学报, 2016, 52(9): 1025-1035. Li Xueda, Shang Chengjia, Han Changchai, et al. Influence of necklace-type m-a constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel[J]. Acta Metallurgica Sinica, 2016, 52(9): 1025-1035. [12]范汇吉, 李 毅, 陈 波, 等. G18NiMoCr3-6铸钢的热处理工艺[J]. 金属热处理, 2018, 43(6): 197-200. Fan Huiji, Li Yi, Chen Bo, et al. Heat treatment process for G18NiMoCr3-6 cast steel[J]. Heat Treatment of Metals, 2018, 43(6): 197-200. [13]Ebrahimpour A, Mostafapour A, Nakhaei M R. Application of response surface methodology for weld strength prediction in FSSWed TRIP steel joints[J]. Welding in the World, 2021, 65: 183-198. [14]Limooei M B, Hosseini S. Optimization of heat treatment in manganese steel by taguchi method[J]. Applied Mechanics and Materials, 2014, 598: 43-46. [15]Mason P W, Prevéy P S. Iterative taguchi analysis: Optimizing the austenite content and hardness in 52100 steel[J]. Journal of Materials Engineering and Performance, 2001, 10(1): 14-21. [16]Prachya P. Application of response surface methodology for modeling of postweld heat treatment process in a pressure vessel steel ASTM A516 grade 70[J]. The Scientific World Journal, 2015, 2015: 318475. [17]丛相州, 彭杏娜, 彭先宽, 等. G115钢大口径管件的热处理[J]. 金属热处理, 2021, 46(3): 90-95. Cong Xiangzhou, Peng Xingna, Peng Xiankuan, et al. Heat treatment for G115 large diameter pipe fittings[J]. Heat Treatment of Metals, 2021, 46(3): 90-95. [18]崔 娟, 刘雅政, 黄学启, 等. 高品质60Si2MnA弹簧钢的热处理工艺优化[J]. 金属热处理, 2008, 33(6): 91-94. Cui Juan, Liu Yazheng, Huang Xueqi, et al. Heat treatment optimization of high-quality 60Si2MnA spring steel[J]. Heat Treatment of Metals, 2008, 33(6): 91-94. [19]孟令涛, 窦 坤, 卢新春, 等. 含硼60Si2Mn弹簧钢的热处理工艺优化[J]. 金属热处理, 2017, 42(7): 126-131. Meng Lingtao, Dou Kun, Lu Xinchun, et al. Optimization of heat treatment process of boron-bearing 60Si2Mn spring steel[J]. Heat Treatment of Metals, 2017, 42(7): 126-131. [20]Meng Deliang, Kang Yonglin, An Shouyong, et al. Microstructure and mechanical properties of Nb-micro-alloyed X100 high deformability pipeline steel[J]. Journal of Iron and Steel Research (International), 2011(S1): 707-711. [21]陈 魁. 试验设计及数据分析[M]. 北京: 清华大学出版社, 2005: 72-78. |