[1]冯朝辉, 于 娟, 郝 敏, 等. 铝锂合金研究进展及发展趋势[J]. 航空材料学报, 2020, 40(1): 1-11. Feng Zhaohui, Yu Juan, Hao Min, et al. Research progress and development trend of aluminum-lithium alloys[J]. Journal of Aeronautical Materials, 2020, 40(1): 1-11. [2]王志文, 杨荣东, 黄元春, 等. 时效处理对挤压成型2195铝锂合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(9): 6-11. Wang Zhiwen, Yang Rongdong, Huang Yuanchun, et al. Effect of aging treatment on microstructure and mechanical properties of extruded 2195 Al-Li alloy[J]. Heat Treatment of Metals, 2022, 47(9): 6-11. [3]Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Materials Science and Engineering A, 1998, 257(1): 100-107. [4]El-Aty A A, Yong X, Guo X, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. Journal of Advanced Research, 2018, 10: 49-67. [5]Gupta R K, Nayan N, Nagasireesha G, et al. Development and characterization of Al-Li alloys[J]. Materials Science and Engineering A, 2006, 420(1/2): 228-234. [6]李劲风, 宁 红, 刘丹阳, 等. Al-Cu-Li系铝锂合金的合金化与微合金化[J]. 中国有色金属学报, 2021, 31(2): 258-279. Li Jinfeng, Ning Hong, Liu Danyang, et al. Alloying and micro-alloying in Al-Cu-Li series alloys[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 258-279. [7]李劲风, 陈永来, 张绪虎, 等. Cu、Li含量对Mg、Ag、Zn复合微合金化铝锂合金力学性能及微观组织的影响[J]. 宇航材料工艺, 2015, 45(2): 24-28. Li Jinfeng, Chen Yonglai, Zhang Xuhu, et al. Influence of Cu and Li contents on mechanical properties and microstructures of Mg, Ag and Zn microalloyed Al-Li alloys[J]. Aerospace Materials and Technology, 2015, 45(2): 24-28. [8]潘 波, 李 睿, 李劲风, 等. Cu, Li含量对新型超高强铝锂合金力学性能及微观组织的影响[J]. 材料研究与应用, 2017, 11(3): 146-151. Pan Bo, Li Rui, Li Jinfeng, et al. Influence of Cu and Li contents on mechanical properties and microstructures of a new super high strength Al-Li alloy[J]. Materials Research and Application, 2017, 11(3): 146-151. [9]Huang J L, Li J F, Liu D Y, et al. Correlation of intergranular corrosionbehaviour with microstructure in Al-Cu-Li alloy[J]. Corrosion Science, 2018, 139: 215-226. [10]Zhang X X, Zhou X R, Teruo H, et al. Corrosion behaviour of 2A97-T6 Al-Cu-Li alloy: The influence of non-uniform precipitation[J]. Corrosion Science, 2018, 132: 1-8. [11]Proton V, Alexis J, Andrieu E, et al. The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium-copper-lithium alloy[J]. Corrosion Science, 2014, 80: 494-502. [12]刘丹阳, 汪洁霞, 李劲风, 等. Mg, Ag, Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190. Liu Danyang, Wang Jiexia, Li Jinfeng, et al. Intergranular corrosion behavior of T6 aging treated micro-alloyed Al-Cu-Li alloys with Mg/Ag/Zn[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(2): 183-190. [13]张 弛. 不同介质下6082铝合金电化学腐蚀研究[D]. 长春: 长春理工大学, 2019. Zhang Chi. Study on electrochemical corrosion of 6082 aluminium alloy in different medium[D]. Changchun: Changchun University of Science and Technology, 2019. [14]Chen X X, Ma X W, Zhao G Q, et al. Effects of re-solution and re-aging treatment on mechanical property, corrosion resistance and electrochemical behavior of 2196 Al-Cu-Li alloy[J]. Materials and Design, 2021, 204: 109662. [15]孙俭峰, 赵 慧, 郭燕青. Al-Li合金微弧氧化膜的电化学腐蚀性能[J]. 黑龙江科技大学学报, 2018, 28(6): 674-677. Sun Jianfeng, Zhao Hui, Guo Yanqing. Electrochemical corrosion resistance of micro-arc oxidation coating on Al-Li alloy[J]. Journal of Heilongjiang University of Science and Technology, 2018, 28(6): 674-677. [16]吴茂永, 田继强, 曹立新, 等. 钨铝合金在不同NaCl溶液中的电化学腐蚀行为研究[J]. 腐蚀科学与防护技术, 2015, 27(1): 25-30. Wu Maoyong, Tian Jiqiang, Cao Lixin, et al. Electrochemical corrosion behavior of tungsten-aluminum alloy in NaCl solutions[J]. Corrosion Science and Protection Technology, 2015, 27(1): 25-30. [17]Rossana G, Mark A B, James E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corrosion Science, 2010, 52: 2855-2866. [18]李谋成, 曾潮流, 林海潮. 参比电极体系内阻对电化学阻抗谱的影响[J]. 腐蚀科学与防护技术, 2001, 13(3): 125-127. Li Moucheng, Zeng Chaoliu, Lin Haichao. Effect of internal resistance of reference electrode system on electrochemical impedance spectroscopy(EIS)[J]. Corrosion Science and Protection Technology, 2001, 13(3): 125-127. [19]Liu J H, Zhao K, Yu M, et al. Effect of surface abrasion on pitting corrosion of Al-Li alloy[J]. Corrosion Science, 2018, 138: 75-84. [20]张寒露, 左 禹, 曹京宜, 等. 利用EIS研究环氧防锈涂层实验室模拟试验和实海浸泡试验相关性[J]. 腐蚀科学与防护技术, 2016, 28(4): 332-336. Zhang Hanlu, Zuo Yu, Cao Jingyi, et al. Correlation of corrosion severity on epoxy coating induced by laboratory simulation test and teal seawater immersion test[J]. Corrosion Science and Protection Technology, 2016, 28(4): 332-336. [21]Xu D K, Birbilis N, Rometsch P A. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54: 17-25. [22]Cao F F, Deng K K, Nie K B, et al. Microstructure and corrosion properties of Mg-4Zn-2Gd-0.5Ca alloy influenced by multidirectional forging[J]. Journal of Alloys and Compounds, 2018, 770: 1208-1220. [23]Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. [24]Huang J C, Ardell A J. Crystal structure and stability of T1, precipitates in aged Al-Li-Cu alloys[J]. Materials Science and Technology, 1987, 3(3): 176-188. [25]Jiang B, Cao F, Wang H, et al. Effect of aging time on themicrostructure evolution and mechanical property in an Al-Cu-Li alloy sheet[J]. Materials Science and Engineering A, 2019, 740-741: 157-164. [26]Pan Z R, Zheng Z Q, Liao Z Q, et al. New cubic precipitate in Al-3.5Cu-1.0Li-0.5In(wt.%) alloy[J]. Materials Letters, 2010, 64(8): 942-944. [27]Li J F, Li C X, Peng Z W, et al. Corrosion mechanism associated with T1 and T2 precipitates of Al-Cu-Li alloys in NaCl solution[J]. Journal of Alloys and Compounds, 2008, 460(1/2): 688-693. |