[1]侯 杰, 董建新, 姚志浩. GH4169 合金高温疲劳裂纹扩展的微观损伤机制[J]. 工程科学学报, 2018, 40(7): 822-832. Hou Jie, Dong Jianxin, Yao Zhihao. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy[J]. Chinese Journal of Engineering, 2018, 40(7): 822-836. [2]刘永长, 郭倩颖, 李 冲, 等. Inconel 718高温合金中析出相演变研究进展[J]. 金属学报, 2016, 52(10): 1259-1266. Liu Yongchang, Guo Qianying, Li Chong, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy[J]. Acta Metallurgica Sinica, 2016, 52(10): 1259-1266. [3]Chamanfar A, Sarrat L, Jahazi M, et al. Microstructural characteristics of forged and heat treated Inconel-718 disks[J]. Materials and Design, 2013, 52: 791-800. [4]田素贵, 王 欣, 谢 君, 等. GH4169G合金热处理期间的相转变特征与机理分析[J]. 金属学报, 2013, 49(7): 845-852. Tian Sugui, Wang Xin, Xie Jun, et al. Characteristic and mechanism of phase transformation of GH4169 alloy during heat treatment[J]. Acta Metallurgica Sinica, 2013, 49(7): 845-852. [5]赵新宝, 谷月峰, 鲁金涛, 等. GH4169合金的研究新进展[J]. 稀有金属材料与工程, 2015, 44(3): 68-774. Zhao Xinbao, Gu Yuefeng, Lu Jintao, et al. New research development of superalloy GH4169[J]. Rare Metal Materials and Engineering, 2015, 44(3): 68-774. [6]Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Materials Science and Engineering A, 2003, 355(1): 114-125. [7]Jiang X W, Wang D, Xie G, et al. The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy[J]. Metallurgical and Materials Transactions A, 2014, 45(13): 6016-6026. [8]马德新, 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51(10): 1179-1190. Ma Dexin. Development of single crystal solidification technology for production of superalloy turbine blades[J]. Acta Metallurgica Sinica, 2015, 51(10): 1179-1190. [9]Padilha A F, Plaut R L, Rios P R. Annealing of cold-worked austenitic stainless steels[J]. ISIJ International, 2003, 43(2): 135-143. [10]余永宁. 材料科学基础[M]. 北京: 高等教育出版社, 2012. [11]檀 校, 郝玉朋, 于晓东, 等. 退火温度对冷轧气相沉积高纯钨再结晶行为的影响[J]. 金属热处理, 2021, 46(3): 33-38. Tan Xiao, Hao Yupeng, Yu Xiaodong, et al. Effect of annealing temperature on recrystallization behaviors of cold-rolled high-purity CVD tungsten[J]. Heat Treatment of Metals, 2021, 46(3): 33-38. [12]王蓬书, 李琴敏, 韦贤毅, 等. 固溶对GH4169合金晶粒尺寸与力学性能的影响[J]. 热加工工艺, 2018, 47(4): 245-249. Wang Pengshu, Li Qinmin, Wei Xianyi, et al. Effect of solid solution on grain size and mechanical properties of GH4169 alloy[J]. Hot Working Technology, 2018, 47(4): 245-249. [13]Mandal S, Jayalakshmi M, Bhaduri A, et al. Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L (N)[J]. Metallurgical and Materials Transactions A, 2014, 45(12): 5645-5656. [14]杨春雷. 304奥氏体不锈钢冷拉拔及退火过程微观组织演变行为研究[D]. 重庆: 重庆大学, 2020. Yang Chunlei. Research on microstructure evolution behavior of 304 austenitic stainless steel during cold drawing and annealing[D]. Chongqing: Chongqing University, 2020. |