[1]牛艳娥, 赵芃沛, 李 宁, 等. 国内外超高强度钢的研究现状及应用[J]. 兵器装备工程学报, 2021, 42(7): 274-279. Niu Yan′e, Zhao Pengpei, Li Ning, et al. Research status and application of ultra-high strength steel at home and abroad[J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 274-279. [2]Horvath C D. Advanced steels for lightweight automotive structures[J]. Materials, Design and Manufacturing for Lightweight Vehicles, 2021, 39-95. [3]朱宝昌, 秦建民, 何小冬. 奥氏体不锈钢固溶热处理工艺的改进[J]. 金属热处理, 1987, 12(9): 39-40. Zhu Baochang, Qin Jianmin, He Xiaodong. Improvement of solution heat treatment process for austenitic stainless steel[J]. Heat Treatment of Metals, 1987, 12(9): 39-40. [4]李 军, 周 佳, 王利刚, 等. 中国乘用车轻量化水平发展趋势研究[J]. 汽车工程学报, 2021, 11(5): 313-319, 362. Li Jun, Zhou Jia, Wang Ligang, et al. Research on the development trend of lightweight level of passenger vehicles in China[J]. Journal of Automotive Engineering, 2021, 11(5): 313-319, 362. [5]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Research progress and prospect of advanced high strength steel for automobile[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076. [6]李 军, 刘 鑫, 曹广祥, 等. 汽车车身高强度钢的应用发展及挑战[J]. 汽车工艺与材料, 2021(8): 1-6. Li Jun, Liu Xin, Cao Guangxiang, et al. Application development and challenges of high strength steel for automobile body[J]. Automotive Technology and Materials, 2021(8): 1-6. [7]Norrbottens Jaernverkab. Manufacturing a hardened steel article: GB149053A[P]. 1977-11-02. [8]Gran O. The history of geography in Sweden[J]. Geographical Review, 2008, 98(3): 416-421. [9]路洪洲, 李 军, 王智文, 等. 国内外乘用车车身轻量化材料应用历史和发展预测[J]. 新材料产业, 2015(12): 31-37. Lu Hongzhou, Li Jun, Wang Zhiwen, et al. Application history and development forecast of lightweight materials for passenger car body at home and abroad[J]. New Materials Industry, 2015(12): 31-37. [10]张永亮, 李雪刚, 张 鑫. 高强度钢板热冲压成形研究与进展[J]. 汽车工艺与材料, 2015(2): 41-46, 49. Zhang Yongliang, Li Xuegang, Zhang Xin. Research and development of hot stamping forming of high strength steel plate[J]. Automobile Technology and Materials, 2015(2): 41-46, 49. [11]Matas S, Hehemann R F. Retained austenite and the tempering of martensite[J]. Nature, 1960, 187(4738): 685-686. [12]Thomas G, Sarikaya M. Lath martensites in carbon steels - are they bainitic[C]// Proceedings of an International Conference on Solid to Solid Phase Transformations. Pittsburgh, PA, USA: Metallurgical Soc of AIME, 1982: 999. [13]Hsu T Y, Xu Z, Li X. Diffusion of carbon during the formation of low-carbon martensite[J]. Scripta Metallurgica, 1983, 17(11): 1285. [14]Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3): 219-237. [15]Moon J, Lee T H, Kim S D, et al. Isothermal transformation of austenite to ferrite and precipitation behavior in 9Cr-1.5Mo-1.25Co-0.1C-V-Nb heat-resistant steel[J]. Materials Characterization, 2020, 170: 110677. [16]徐祖耀, 李学敏. 低碳马氏体形成时碳的扩散[J]. 金属学报, 1983(2): 7-12, 143-144. Xu Zuyao, Li Xuemin. Carbon diffusion during the formation of low carbon martensite[J]. Acta Metallurgica Sinica, 1983(2): 7-12, 143-144. [17]Chen P, Li X W, Wang P F, et al. Partitioning-related microstructure evolution and mechanical behavior in a δ-quenching and partitioning steel[J]. Journal of Materials Research and Technology, 2022, 17: 1338-1348. [18]Toji Y, Miyamoto G, Raabe D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation[J]. Acta Materialia, 2015, 86: 137-147. [19]刘宗昌, 计云萍. 马氏体组织形貌形成机理[J]. 热处理技术与装备, 2019, 40(4): 1-7. Liu Zongchang, Ji Yunping. Formation mechanism of martensite morphology[J]. Heat Treatment Technology and Equipment, 2019, 40(4): 1-7. [20]Liu S, Long M, Zhang S, et al. Study on the prediction of tensile strength and phase transition for ultra-high strength hot stamping steel[J]. Journal of Materials Research and Technology, 2020, 9(6): 14244-14253. [21]Li Y, Chen Y, Li S. Phase transformation testing and modeling for hot stamping of boron steel considering the effect of the prior austenite deformation[J]. Materials Science and Engineering A, 2021, 821: 141447. [22]Kirkaldy J S. Diffusion in multicomponent metallic systems: II. Solutions for two-phase systems with applications to transformations in steel[J]. Canadian Journal of Physics, 2011, 36(7): 907-916. [23]Lee S J, Pavlina E J, Tyne C. Kinetics modeling of austenite decomposition for an end-quenched 1045 steel[J]. Materials Scienceand Engineering A, 2010, 527(13/14): 3186-3194. [24]Li M V, Niebuhr D V, Meekisho L L, et al. A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B, 1998, 29(3): 661-672. [25]Åkerström P, Oldenburg M. Austenite decomposition during press hardening of a boron steel—Computer simulation and test[J]. Journal of Materials Processing Tech, 2006, 174(1/3): 399-406. [26]Hart-Rawung T, Buhl J, Bambach M. Extension of a phase transformation model for partial hardening in hot stamping[J]. Journal of Machine Engineering, 2018, 18(3): 88-98. [27]Hippchen P, Lipp A, Grass H, et al. Modelling kinetics of phase transformation for the indirect hot stamping process to focus on car body parts with tailored properties[J]. Journal of Materials Processing Technology, 2016, 228(8): 59-67. [28]Neumann R, Schuster S, Gibmeier J, et al. Two-scale simulation of the hot stamping process based on a Hashin-Shtrikman type mean field model[J]. Journal of Materials Processing Technology, 2019, 267: 124-140. [29]Serajzadeh S. Modelling of temperature history and phase transformations during cooling of steel[J]. Journal of Materials Processing Technology, 2004, 146(3): 311-317. [30]Bok H H, Choi J W, F Barlat, et al. Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect[J]. International Journal of Plasticity, 2014, 58: 154-183. [31]Liang J, Lu H, Zhang L, et al. A 2000 MPa grade Nb bearing hot stamping steel with ultra-high yield strength[J]. Materials Science and Engineering A, 2021, 801: 140419. [32]Ys A, Kwa B, Djp A, et al. An experimental investigation on the ductility and post-form strength of a martensitic steel in a novel warm stamping process[J]. Journal of Materials Processing Technology, 2020, 275: 116387. [33]Yuan C, Li S, Huang J, et al. Effect of hierarchical martensitic microstructure on fatigue crack growth behavior of ultra-high strength hot stamping steel[J]. Materials Characterization, 2021, 174(3): 111041. [34]陈 楚, 李 晓. B1500HS钢热冲压工艺参数实验研究[J]. 一重技术, 2018(6): 53-58. Chen Chu, Li Xiao. Experimental study on hot stamping process parameters of B1500HS steel[J]. Science and Technology, 2018(6): 53-58. [35]黄惠茹, 李晓阳, 张琳琳, 等. 淬火低碳钢硬度、残余应力和微观组织间的关系[J]. 科学技术与工程, 2017(34): 191-196. Huang Huiru, Li Xiaoyang, Zhang Linlin, et al. Relationship between hardness, residual stress and microstructure of quenched low carbon steel[J]. Science Technology and Engineering, 2017(34): 191-196. [36]Hauserová D, Duchek M, Dlouhý J, et al. Properties of advanced experimental CMnSiMo steel achieved by QP process[J]. Procedia Engineering, 2011, 10(1): 2961-2966. [37]丁培道, 周守则, 潘复生. 硅对低合金高速钢二次硬化的影响[J]. 金属科学与工艺, 1988(1): 56-62. Ding Peidao, Zhou Shouze, Pan Fusheng. Effect of silicon on secondary hardening of low alloy high speed steel[J]. Metal Science and Technology, 1988(1): 56-62. [38]陈雨来, 董 辰, 江海涛, 等. Si、Al元素对QP钢连续冷却的相变及组织影响[J]. 热加工工艺, 2010, 39(2): 10-12, 16. Chen Yulai, Dong Chen, Jiang Haitao, et al. Effect of Si and Al elements on phase transition and microstructure of QP steel after continuous cooling[J]. Hot Working Technology, 2010, 39(2): 10-12, 16. [39]HajyAkbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the QP process in a low C steel[J]. Acta Materialia, 2016, 104: 72-83. [40]Clarke A J, Miller M K, Field R D, et al. Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel[J]. Acta Materialia, 2014, 77: 17-27. [41]Dai Z B, Xu W, He J, et al. Effect ofinterfacial Mn partitioning on carbon partitioning and interface migration during the quenching and partitioning process[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 1-7. [42]侯雅青, 张 宇, 于明光, 等. QP钢残留奥氏体含量的热动力学计算[J]. 金属热处理, 2022, 47(1): 25-31. Hou Yaqing, Zhang Yu, Yu Mingguang, et al. Thermodynamic calculation of residual austenite content in QP steel[J]. Heat Treatment of Metals, 2022, 47(1): 25-31. [43]Jiang T, Sun J, Wang Y, et al. Strong grain-size effect on martensitic transformation in high-carbon steels made by powder metallurgy[J]. Powder Technology, 2020, 363: 652-656. [44]Felipe M Carvalho, Dany Centeno, Gustavo Tressia, et al. Development of a complex multicomponent microstructure on commercial carbon-silicon grade steel by governing the phase transformation mechanisms to design novel quenching and partitioning processing[J]. Journal of Materials Research and Technology, 2022, 18: 4590-4603. [45]Dai J, Meng Q, Zheng H. An innovative pathway to produce high-performance quenching and partitioning steel through ultra-fast full austenitization annealing[J]. Materials Today Communications, 2020, 25: 101272. [46]Huang Y, Li Q, Huang X, et al. Effect of bainitic isothermal transformation plus QP process on the microstructure and mechanical propertiesof 0.2C bainitic steel[J]. Materials Science and Engineering A, 2016, 678: 339-346. [47]Yan S, Liu X, Liu W J, et al. Comparative study on microstructure and mechanical properties of a C-Mn-Si steel treated by quenching and partitioning (QP) processes after a full and intercritical austenitization[J]. Materials Science and Engineering A, 2017, 684: 261-269. [48]Kantanen P K, Javaheri V, Somani M C, et al. Effect of deformation and grain size on austenite decompositionduring quenching and partitioning of (high) silicon-aluminum steels[J]. Materials Characterization, 2020, 171: 110793. [49]Luo W, Wang L, Wang Y, et al. Microstructure and mechanical properties of a 2wt%Nb bearing low carbon steel[J]. Materials Science and Engineering A, 2021, 826: 141957. [50]Zeng T, Zhang S, Shi X, et al. Effect of NbC and VC carbides on microstructure and strength of high-strength low-alloyed steels for oil country tubular goods[J]. Materials Science and Engineering A, 2021, 824: 141845. [51]Qian W, Yu S, Gsa C, et al. Effect of niobium on sulfide stress cracking behavior of tempered martensitic steel[J]. Corrosion Science, 165: 108387. [52]Sadeghi F, Zargar T, Kim J W, et al. The effect of Ni depletion on athermal martensitic transformation in 304 austenitic stainless steel[J]. Materials Characterization, 2021, 175: 111063. [53]Huda Nazmul, Midawi Abdelbaset R H, Gianetto James, et al. Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels[J]. Materials Science and Engineering A, 2016, 662: 481-491. [54]Zhang H, X Zhu, Xue P. Effects of quenching and over-aging temperatures on mechanical properties of ultra-high strength cold-rolled martensite steels[J]. Baosteel Technical Research, 2019, 13(1): 1-8. [55]Niessen F, Gazder A A, Hald J, et al. Multiscale in-situ studies of strain-induced martensite formation in inter-critically annealed extra-low-carbon martensitic stainless steel[J]. Acta Materialia, 2021, 220: 117339. [56]Banis A, Bouzouni M, Gavalas E, et al. The formation of a mixed martensitic/bainitic microstructure and the retainment of austenite in a medium-carbon steel during ultra-fast heating[J]. Materials Today Communications, 2020, 26(7): 101994. [57]朱晓东, 薛 鹏, 李 伟. 回火对超高强度马氏体钢力学性能的影响[J]. 宝钢技术, 2019(6): 1-5. Zhu Xiaodong, Xue Peng, Li Wei. Effect of tempering on mechanical properties of ultra-high strength martensitic steel[J]. Baosteel Technology, 2019(6): 1-5. [58]周立初, 赵宇飞, 胡显军, 等. 奥氏体化热处理对冷拉拔珠光体钢丝织构再分布的影响[J]. 材料研究学报, 2014, 28(8): 615-620. Zhou Lichu, Zhao Yufei, Hu Xianjun, et al. Effect of austenitic heat treatment on texture redistribution of cold drawn pearlite steel wire[J]. Journal of Materials Research, 2014, 28(8): 615-620. [59]Wu H, Ju B, Tang D, et al. Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel[J]. Materials Science and Engineering A, 2015, 622: 61-66. [60]Cai M, Chen L, Fang K, et al. The effects of a ferritic or martensitic matrix on the tensile behavior of a nano-precipitation strengthened ultra-low carbon Ti-Mo-Nb steel[J]. Materials Science and Engineering A, 2021, 801(11): 140410. [61]Xu C, Dai W J, Chen Y, et al. Control of dislocation density maximizing precipitation strengthening effect[J]. Journal of Materials Science and Technology, 2022, 127: 133-143. |