[1]余海燕, 陈关龙, 张卫刚, 等. 板料成形技术中拉深筋的研究进展[J]. 塑性工程学报, 2004, 11(3): 77-81. Yu Haiyan, Chen Guanlong, Zhang Weigang. Development of drawbead investigation in sheet metal forming technology[J]. Journal of Plasticity Engineering, 2004, 11(3): 77-81. [2]杨 珂, 周多营. 影响汽车车身模具开发周期和模具质量的关键因素[J]. 南方农机, 2018, 49(12): 72. [3]李金桂. 表面强化技术与模具寿命[J]. 中国表面工程, 2002, 15(1): 2-7. Li Jingui. Surface hardening technologies and mould service life[J]. China Surface Engineering, 2002, 15(1): 2-7. [4]王 磊, 胡金海. 火焰表面淬火技术在压力加工模具中的应用[J]. 科技创新与应用, 2014(32): 126. [5]Roshchupkin V V, Lyakhovitskii M M, Pokrasin M A, et al. Effect of quenching on the microhardness of steels[J]. Russian Metallurgy (Metally), 2019, 2019(1): 48-51. [6]赵小雨, 吴云霞, 易国华, 等. 钢材在汽车模具中的应用研究[J]. 内蒙古煤炭经济, 2017(24): 15-16. [7]Prabhakaran S, Kalainathan S, Shukla P, et al. Residual stress, phase, microstructure and mechanical property studies of ultrafine bainitic steel through laser shock peening[J]. Optics and Laser Technology, 2019, 115: 447-458. [8]Wu L J, Luo K Y, Liu Y, et al. Effects of laser shock peening on the micro-hardness, tensile properties, and fracture morphologies of CP-Ti alloy at different temperatures[J]. Applied Surface Science, 2018, 431: 122-134. [9]Xu Y, Du Z, Ruan L, et al. Research status and development of laser shock peening[J]. Journal of Laser Applications, 2016, 28(2): 022508. [10]王新明, 任玉灿, 张灿果, 等. 激光技术研究[J]. 现代商贸工业, 2017, (16): 197-198. [11]周颖茂. 汽车覆盖件模具表面淬火变形的控制[J]. 汽车工艺与料, 2017, (8): 44-51, 54. [12]Babu P D, Marimuthu P. Status of laser transformation hardening of steel and its alloys: A review[J]. Emerging Materials Research, 2019, 8(2): 1-18. [13]焦咏翔, 邓德伟, 孙 奇, 等. 工艺参数对42CrMo钢激光淬火效果的影响[J]. 金属热处理, 2021, 46(11): 90-96. Jiao Yongxiang, Deng Dewei, Sun Qi, et al. Influence of process parameter on laser quenching effect of 42CrMo steel[J]. Heat Treatment of Metals, 2021, 46(11): 90-96. [14]温 华. 奥氏体与马氏体耐磨钢磨损性能及机理的研究[J]. 山西焦煤科技, 2019, 43(12): 17-21. Wen Hua. Comparative study on wear properties and wear mechanism of austenite and martensite wear-resistant steel[J]. Shanxi Coking Coal Science and Technology, 2019, 43(12): 17-21. [15]刘 杰, 王 程, 钟 结, 等. 45钢激光相变硬化和感应加热表面淬火硬化后的组织和性能[J]. 材料热处理学报, 2018, 39(11): 58-66. Liu Jie, Wang Cheng, Zhong Jie, et al. Microstructure and properties of 45 steel after laser transformation hardening and induction heating surface hardening[J]. Transactions of Materials and Heat Treatment, 2018, 39(11): 58-66. [16]杨俊龙, 黄 敏, 胡柳益, 等. 高功率激光淬火对35CrMo钢表层组织与耐磨性能的影响[J]. 机械工程材料, 2022, 46(2): 63-67. Yang Junlong, Hung Min, Hu Liuyi, et al. Effect of high-power laser quenching on microstructure and wear resistance of 35CrMo steel surface layer[J]. Mechanical Engineering Materials, 2022, 46(2): 63-67. [17]潘雪新, 常 红, 李忠文, 等. 激光淬火对高速动车组EA4T车轴钢和性能的影响[J]. 金属热处理, 2020, 45(5): 161-165. Pan Xuexin, Chang Hong, Li Zhongwen, et al. Influence of laser quenching on structure and property of EA4T axle steel for high-speed EMU[J]. Heat Treatment of Metals, 2020, 45(5): 161-165. [18]De Diego-Calderón I, Rodriguez-Calvillo P, Lara A, et al. Effect of microstructure on fatigue behavior of advanced high strength steels produced by quenching and partitioning and the role of retained austenite[J]. Materials Science and Engineering A, 2015, 641: 215-224. |