[1]Kim H, Kang J Y, Son D, et al. Evolution of carbides in cold-work tool steels[J]. Materials Characterization, 2015, 107: 376-385. [2]Zheng B, Lin Y, Zhou Y, et al. Gas atomization of amorphous aluminum powder: Part II. Experimental investigation[J]. Metallurgical and Materials Transactions B, 2009, 40(6): 995-1004. [3]Zhu Qintian, Li Jing, Shi Chengbin, et al. Precipitation behavior of carbides in high-carbon martensitic stainless steel[J]. International Journal of Materials Research, 2017, 108(1): 20-28. [4]Xu H, Shen Y, Cao R, et al. Effect of different rolling passes on microstructure and mechanical properties of M390 powder metallurgy high-speed steel[J]. Journal of Materials Engineering and Performance, 2022, 31: 9650-9659. [5]Wei S, Zhu J, Xu L. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel[J]. Tribology International, 2006(39): 641-648. [6]Tsuchiyama T, Tobata J, Tao T, et al. Quenching and partitioning treatment of a low-carbon martensitic stainless steel[J]. Materials Science and Engineering A, 2012, 532: 585-592. [7]Zhu Q, Zhu R T, Tieu R K, et al. In-situ investigation of oxidation behaviour in high-speed steel roll material under dry and humid atmospheres[J]. Corrosion Science, 2010, 52(8): 2707-2715. [8]Zhu Q, Zhu H T, Tieu A K, et al. Three dimensional microstructure study of oxide scale formed on a high-speed steel by means of SEM, FIB and TEM[J]. Corrosion Science, 2011, 53(11): 3603-3611. [9]Li Z X, Li C S, Zhang J, et al. Effects of annealing on carbides size and distribution and cold formability of 1.0C-1.5Cr bearing steel[J]. Metallurgical and Materials Transactions A, 2015, 46(7): 3220-3231. [10]Zhu Q, Li J, Shi C, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel[J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4313-4321. [11]Zhou X F, Zhu W L, Jiang H B, et al. A new approach for refining carbide dimensions in M42 super hard high-speed steel[J]. Journal of Iron and Steel Research, 2016, 23(8): 800-807. [12]Hetzner D W. Refining carbide size distributions in M1 high speed steel by processing and alloying[J]. Materials Characterization, 2001, 46(2-3): 175-182. [13]Dong Z, Jiang B, Mei Z, et al. Effect of carbide distribution on the grain refinement in the steel for large-size bearing ring[J]. Steel Research International, 2016, 87(6): 745-751. [14]刘少尊, 车洪艳, 李 欧, 等. 淬火工艺对粉末冶金马氏体不锈钢组织与性能的影响[J]. 金属热处理, 2022, 47(6): 128-132. Liu Shaozun, Che Hongyan, Li Ou, et al. Effect of quenching process on microstructure and properties of powder metallurgy martensitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(6): 128-132. [15]曹 睿, 沈 漪, 周珍珍, 等. 不同冷却速度对M390粉末冶金高速钢组织与硬度的影响[J]. 材料热处理学报, 2022, 43(4): 116-123. Cao Rui, Shen Yi, Zhou Zhenzhen, et al. Effect of different cooling rates on microstructure and hardness of M390 powder metallurgy high speed steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(4): 116-123. [16]王铁军, 杨 博, 梁 晨, 等. 退火温度对热轧态M390组织与性能的影响[J]. 材料导报, 2020, 34(6): 12122-12126. Wang Tiejun, Yang Bo, Liang Chen, et al. Effect of annealing temperature on microstructure and mechanical property of hot-rolled M390[J]. Materials Reports, 2020, 34(6): 12122-12126. [17]Lindwall G, Frisk K. Assessment andevaluation of mobilities for diffusion in the bcc Cr-V-Fe system[J]. Journal of Phase Equilibria and Diffusion, 2009, 30(4): 323-333. [18]Yang Y, Zhao H, Dong H. Carbide evolution in high-carbon martensitic stainless cutlery steels during austenitizing[J]. Journal of Materials Engineering and Performance, 2020, 29(6): 3868-3875. [19]Kang M, Park G, Jung J, et al. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel[J]. Journal of Alloys and Compounds, 2015, 627: 359-366. [20]Titov V I, Tarasenko L V, Utkina A N. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium-vanadium steel[J]. Physics of Metals and Metallography, 2017, 118(1): 81-86. |