[1]李 军, 路洪洲, 易红亮, 等. 乘用车轻量化及微合金化钢板的应用[M]. 北京: 北京理工大学出版社, 2015: 3-23. [2]Maryam Soleimani, Alireza Kalhor, Hamed Mirzadeh. Transformation-induced plasticity (TRIP) in advanced steels: A review[J]. Materials Science and Engineering: A, 2020, 795: 140023. [3]杜林秀, 高秀华, 吴红艳, 等. 低碳中锰钢板材住址控制理论及性能[M]. 北京: 冶金工业出版社, 2021: 5-21. [4]王明明, 马 飞, 裴未迟, 等. 汽车用高强塑积中锰钢的研究进展[J]. 金属热处理, 2022, 47(9): 272-280. Wang Mingming, Ma Fei, Pei Weichi, et al. Research progress of medium manganese steels with high product of strength and elongation for automobile[J]. Heat Treatment of Metals, 2022, 47(9): 272-280. [5]Yang D P, Du P G, Wu D, et al. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process[J]. Journal of Materials Science and Technology, 2021, 75: 205-215. [6]Cai H L, Chen P, Oh J K, et al. Quenching and flash-partitioning enables austenite stabilization during press-hardening processing[J]. Scripta Materialia, 2020, 178: 77-81. [7]Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels[J]. Acta Materialia, 2014, 79: 268-281. [8]Jacques P J, Delannay F, Ladrière J. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels[J]. Metallurgical and Materials Transactions A, 2001, 32(11): 2759-2768. [9]Rietveld H M. A profile refinement method for nuclear and magnetic structures[J]. Journal of Applied Crystallography, 1969, 2(2): 65-71. [10]Xu H F, Zhao J, Cao W Q, et al. Tempering effects on the stability of retained austenite and mechanical properties in a medium manganese steel[J]. ISIJ International, 2012, 52(5): 868-873. [11]Van Dijk N H, Butt A M, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling[J]. Acta Materialia, 2005, 53(20): 5439-5447. [12]张加美. 超低碳中锰钢组织亚微米化机理及强塑性控制[D]. 沈阳: 东北大学, 2018. [13]Ding R, Dai Z, Huang M, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel[J]. Acta Materialia, 2018, 147: 59-69. [14]Yang D P, Wu D, Yi H L. Reverse transformation from martensite into austenite in a medium-Mn steel[J]. Scripta Materialia, 2019, 161: 1-5. [15]Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels[J]. Materials Science and Engineering A, 2011, 528(13/14): 4516-4521. [16]Lee S J, Kim J, Kane S N, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels[J]. Acta Materialia, 2011, 59(17): 6809-6819. [17]Cai Z H, Ding H, Misra R D K, et al. Unique serrated flow dependence of critical stress in a hot-rolled Fe-Mn-Al-C steel[J]. Scripta Materialia, 2014, 71: 5-8. [18]Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Materialia, 2014, 78: 369-377. [19]Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scripta Materialia, 2010, 63(8): 815-818. [20]Sugimoto K I, Kobayashi M, Hashimoto S I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel[J]. Metallurgical Transactions A, 1992, 23(11): 3085-3091. |