金属热处理 ›› 2023, Vol. 48 ›› Issue (11): 149-155.DOI: 10.13251/j.issn.0254-6051.2023.11.023

• 工艺研究 • 上一篇    下一篇

奥氏体化温度对等温淬火球墨铸铁摩擦磨损性能的影响

杜宝帅1,2, 米春旭1,2, 王鑫3, 杨超3, 杨鑫宇3, 闫芝成1,2   

  1. 1.国网山东省电力公司电力科学研究院, 山东 济南 250002;
    2.山东省智能电网技术创新中心, 山东 济南 250002;
    3.西安理工大学 材料科学与工程学院, 陕西 西安 710048
  • 收稿日期:2023-07-26 修回日期:2023-08-28 出版日期:2023-11-25 发布日期:2023-12-27
  • 作者简介:杜宝帅(1982—),男,正高级工程师,博士,主要研究方向为电工新材料、表面防护技术、耐磨损材料,E-mail:dubaoshuai@163.com
  • 基金资助:
    国家电网有限公司总部管理科技项目(5500-202216123A-1-1-ZN)

Effect of austenitizing temperature on friction and wear properties of austempered ductile iron

Du Baoshuai1,2, Mi Chunxu1,2, Wang Xin3, Yang Chao3, Yang Xinyu3, Yan Zhicheng1,2   

  1. 1. State Grid Shandong Electric Power Research Institute, Jinan Shandong 250002, China;
    2. Shandong Smart Grid Technology Innovation Center, Jinan Shandong 250002, China;
    3. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an Shaanxi 710048, China
  • Received:2023-07-26 Revised:2023-08-28 Online:2023-11-25 Published:2023-12-27

摘要: 奥氏体化处理是得到高性能等温淬火球墨铸铁(Austempered ductile iron, ADI)的关键步骤,通过奥氏体化处理,铸铁基体组织向奥氏体转化,为后续的等温淬火处理过程中奥氏体向奥铁体的相变提供前驱体。对奥氏体化温度进行调控,研究了ADI微观组织的相应变化及其对力学性能、摩擦磨损性能的影响。研究发现,奥氏体化温度的提高使石墨向基体的渗碳作用增强,奥氏体碳含量增加、稳定性增强,一方面导致奥氏体在冷却转变过程中铁素体的形核驱动力降低,奥铁体组织中铁素体形态更细长,另一方面导致块状残留奥氏体增多、碳含量提高,使材料强度、硬度及断后伸长率均发生下降。较高的奥氏体化温度使ADI含有大量高碳残留奥氏体,导致其在摩擦磨损过程中难以通过应力诱发相变形成马氏体来提升耐磨性。综合力学及摩擦磨损性能,ADI的奥氏体化温度应不大于950 ℃。

关键词: 等温淬火球墨铸铁(ADI), 奥氏体化温度, 奥氏体, 摩擦磨损行为, 磨损机理

Abstract: Austenitization treatment is a crucial step in obtaining high-performance austempered ductile iron (ADI). Through austenitization treatment, the cast iron matrix structure transforms into austenite, providing a precursor for the subsequent austempering process during which austenite transforms into ausferrite. The austenitization temperature was controlled, and the corresponding changes in ADI's microstructure and their effects on mechanical properties and friction-wear properties were investigated. The research reveals that the increase of austenitization temperature can enhance the carburizing effect of carbon diffusion from graphite to the matrix, resulting in higher carbon content and improved stability in austenite. On one hand, this leads to decreased nucleation driving force of ferrite in the cooling transformation process, resulting in a finer elongated ferrite morphology in the austenite-ferrite structure. On the other hand, it leads to an increase in the volume of blocky retained austenite and carbon content, resulting in a decrease in strength, hardness and elongation after fracture. Higher austenitization temperatures result in the ADI containing a significant amount of high-carbon retained austenite, making it challenging for stress-induced phase transformation to form martensite during friction-wear processes, and thus reducing wear resistance. Considering mechanical and friction-wear properties, the austenitization temperature for the ADI should not exceed 950 ℃.

Key words: austempered ductile iron (ADI), austenitizing temperature, austenite, friction and wear behavior, wear mechanism

中图分类号: