[1]Tian Y X, Li S J, Hao Y L, et al. High temperature deformation behavior and microstructure evolution mechanism transformation Ti2448 alloy[J]. Acta Metallurgica Sinica, 2012, 48(7): 837-844. [2]师俊峰, 韩珍梅. 航空紧固件钛合金材料的应用现状[J]. 机械管理开发, 2020, 35(5): 258-259. Shi Junfeng, Han Zhenmei. Application status of titanium alloy materials for aviation fasteners[J]. Mechanical Management and Development, 2020, 35(5): 258-259. [3]李 蒙, 凤伟中, 关 蕾, 等. 航空航天紧固件用钛合金材料综述[J]. 有色金属材料与工程, 2018, 39(4): 49-53. Li Meng, Feng Weizhong, Guan Lei, et al. Summary of titanium alloy for fastener in aerospace[J]. Nonferrous Metal Materials and Engineering, 2018, 39(4): 49-53. [4]李 雷, 罗斌莉, 杨宏进, 等. 固溶时效处理对TB9钛合金棒材组织与性能及其弹簧弹性的影响[J]. 钛工业进展, 2012, 9(5): 30-32. Li Lei, Luo Binli, Yang Hongjin, et al. Impact of solution and aging treatment on the properties of TB9 alloy and its spring[J]. Titanium Industry Progress, 2012, 9(5): 30-32. [5]王 健, 黄鎏杰, 金 伟. 热处理对TB9合金力学性能及显微组织的影响[J]. 稀有金属材料与工程, 2017, 46(S1): 129-133. Wang Jian, Huang Liujie, Jin Wei. Effect of heat treatment on mechanical properties and microstructure of TB9 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(S1): 129-133. [6]Faller Kurt. Titanium suspension springs for production motorcycles-less costly alloy brings titanium's benefits to motocross rear suspension springs[J]. Springs, 2006, 45(3): 49-50. [7]赵庆云, 程思锐, 黄 宏. 1240 MPa级Ti-38644高锁螺栓的拉伸疲劳增寿机理[J]. 材料研究学报, 2019, 33(10): 735-741. Zhao Qingyun, Cheng Sirui, Huang Hong. Mechanism of fatigue life enhancement for 1240 MPa Hi-lock bolt of Ti-38644 Ti-alloy[J]. Chinese Journal of Materials Research, 2019, 33(10): 735-741. [8]Huang L J, Wang J, Zhang H B, et al. Effects of cold drawing deformation and aging temperature on microstructure and mechanical properties of TB9 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(1): 11-14. [9]董瑞峰, 李金山, 唐 斌, 等. 航空紧固件用钛合金材料发展现状[J]. 航空制造技术, 2018, 61(4): 86-91. Dong Ruifeng, Li Jinshan, Tang Bin, et al. Research development of titanium for fastener application in aerospace[J]. Aeronautical Manufacturing Technology, 2018, 61(4): 86-91. [10]胡志杰, 冯军宁, 马忠贤, 等. 我国钛及钛合金热处理标准现状[J]. 金属热处理, 2021, 46(3): 243-246. Hu Zhijie, Feng Junning, Ma Zhongxian, et al. Current status of heat treatment standards of titanium and titanium alloys[J]. Heat Treatment of Metals, 2021, 46(3): 243-246. [11]何 丹, 王庆娟, 高 颀. 新型β钛合金时效析出相的演变及硬化[J]. 稀有金属, 2016, 40(7): 633-639. He Dan, Wang Qingjuan, Gao Qi. Evolution and hardening of age-precipitates of new β titanium alloy[J]. Chinese Journal of Rare Metals, 2016, 40(7): 633-639. [12]尹仁锟. 新型超高强β钛合金相析出特性研究[D]. 西安: 西安建筑科技大学, 2016. Yin Renkun. Study on phase precipitation characteristics of new ultra-high strength β titanium alloy[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. [13]肖树龙, 陈兆琦, 荆 科, 等. 热处理对亚稳β钛合金显微组织与性能的影响[J]. 中国有色金属学报, 2022, 32(6): 1655-1664. Xiao Shulong, Chen Zhaoqi, Jing Ke, et al. Effect of heat treatment on microstructure and properties of metastable β titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(6): 1655-1664. [14]Zheng J. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys[J]. Acta Materialia, 2016, 103: 850-858. [15]盖晋阳, 程 军, 于振涛, 等. β型钛合金细化α析出相的方法及研究现状[J]. 热加工工艺, 2020, 49(14): 1-5. Gai Jinyang, Cheng Jun, Yu Zhentao, et al. Methods and research status of refinement of α precipitates in β-type titanium alloy[J]. Hot Working Technology, 2020, 49(14): 1-5. |